(四)固相合成法生产莫奈林
安赛蜜在水溶液中的稳定性取决于pH和温度,在食品和饮料中的最佳pH 范闱3~7。在正常情况下安赛密溶液的浓度差超过5%时,就能尝出甜味的差 异。如发觉甜味有差别时,就可预计到5%的浓度差已开始产生了。pH为3的 产品在室温储存几年后,其中的安赛密才有5%的损失,这已大大地超过规定的 储存期,随着pH的升髙,货架期的稳定性也进一步改进。在PH7.5的缓冲液 中,室温中储存10年后,安赛蜜含萤仍为99%,这就证明存放10年的安赛蜜 含谊在统计上没有显著的损失。
/ \ / \
以L-丝氨酸为基础,可以设计两个系列的新二肽分子(表2-45)。L-丝 氨酸酯[42] ~ [45]的羟基已被酯化,使得“下面”基团变大,这些化合物 要比相应D-丝氨酸酯[26] ~ [30]的甜度低得多。然而,L-丝氨酸醚 [46] ~ [48]是很甜的,这些分子中R基团的环化和髙度甲基化对保持其甜度 是很重要的,从2-甲基-丝氨酸衍生而来的葑基醚[49]甜度很高。
日本人食用嗦吗甜已有十几年的历史了,除了上述典型的毒理试验外,人们 还仔细分析研究了日本人的食用情况及食用结果,结果都没发现仟何不良效果。 这是很正常的,因为一个人终身摄取的嗦吗甜总数苗:是很少的。但有一点箝要指 出,就楚它是高溶性的强力蛋穴粉末,如果不小心吸人体内,敏感者有时会出现 过敏发炎现象,因此处理原料时必须小心。添加些填充剂或配制成液体制品可避 免这个危害。
过髙浓度的纽甜可降低膳食的可口性(尤其是对大鼠和小鼠而言),试验动 物在体重高峰期间,与对照组比较时出现了轻度、持续地食物消耗减少(图 2-53)。而在一个较大的纽甜剂量范围内,动物的食物消耗量减少、体重降低 和体重增长减慢没有剂量依赖关系(图2-54)。这类与膳食的可口性有关的影 响在其他物质的毒理学试验中同样可以观察到(包括具有很觅味逬的其他非营 养类增甜剂),并非是纽甜所独有的。当一种的食物具有充足的营养,但是可口 性变差时,动物只吃少量食物仍会保持适当的营养。因此当大鼠面对可口性较差 的食物,它们仍会食人少量:,这种由于摄人食物减少所导致体重改变的现象并不 是副作用。然而,这种情况对安全性试验的结果有不利影响,因此食物的可口性 在安全性试验中是一个重要的考虑因素。
有人曾试图通过巨大芽孢杆菌(B. megaterium) NCIB 8508直接发酵蔗糖, 来生产S -6-a,但蔗糖转化酶的活力却导致了主产物是G - 6 - a而不是S - 6 -
(二)酶反应过程的动力学模型该合成反应中,甜菊苷与蔗糖经FFase催化生成FSte和葡萄糖。该反应双底 物、双产物,并且同时有副反应发生,反应机制相当复杂。Chamber!等认为,蔗 糖和呋喃果聚糖的转果糖基反应,符合乒乓(BiBi)机制。Suzuki等认为,S和蔗 糖的转果糖基反应也符合相同的机制(图4-21),并对该反应建立了动力学模型。 该反应中,游离爾E和蔗糖Sue反应形成第一个复合物E ? Sue。然后G从E ? Sue 释放形成第2个复合物E ? Fru,该复合物与S反应形成第3个复合物E ? FSte,随 后FSte释放。在该系统除转果糖基作用外,还同时进行蔗糖水解和FSte水解反应。 这些水解反应若把水看作第二底物,则也符合乒乓(BiBi)机制,如图4-21 (2) 和(3)所示。根据研究认为FSte的合成不仅受到G的抑制,还受到F的抑制, 因此必须考虑G和F的竞争性抑制作用,并认为酶和副产物的复合物E ? Glu和 E* Fru呈惰性。FSte合成的总反应的理论机制如图4-22所示,A,?屺分别表示一 级反应的速率常数。图4-21各反应的乒乓(BiBi)机制示意图 (1) FSte合成反应 <2>蔗糖水解反哚 (3) FSte水解反应
安化县甘草甜素
展开阅读全文