修文县甜菊糖
蔗糖醚化和脱氧衍生物的甜度变化,也证实了以上推断的正确性。如蔗糖的 4 -脱氣、4 -0 -甲基衍生物均有甜味;而当蔗糖分子C -3'位上的羟基被酯化成 3#-0-乙酯蔗糖时,由干掩盖了生甜团的AH基团,因此生成物不具有甜味。这 些结果均与以上确定的蔗糖甜味三角形基团的结论一致。此外还发现,3-酮基-蔗 糖在甜度h和庶糖相似(保留有蔗糖AH、B双官能实体),而蔗糖C-3位上的差向 立体异构体异鹿糖则完全没有甜味。为此,我们甚至可以预测出3-0-甲基蔗糖成 该是甜的,而2 - 0 -甲基蔗糖衍生物如2 -脱氧蔗糖或2 -酮基-蔗糖必然不甜。
E8,播/】丨丨?专—?性熟化切动子(toinalo fmit - ripening specific promoter);
纽甜保留了阿斯巴甜的许多优良特性,如纯正的甜味、良好的味觉分布与 风味增强性质、无能量、无致龋性、在酸性介质下稳定等。不仅如此,它还在 很多方面优于阿斯巴甜,如表2-21所示。在干燥的条件下,纽甜具有更长的
(二)亚急性毒性试验
别与山梨糖醇混合时其甜味特性甚佳,特 別适合于应用在无能蛍糖果和要求有填充 剂的食品上。
选择最优的两种有机溶剂DMSO和MEA进行复配,研究其对反应产率的影 响。结果发现,最优的复配为9%的DMS0和18%的MEA (表2-37)。在该配 比下,酶反应的产率达到70. 3% (mol/mol) b加入DMSO和MEA对低熔点混合 物的熔点的影响见图2 -67。在加入9%的DMSO和18%的MEA的条件下,当 /V-苄氣羰基-L-天冬氨酸乙酯和D-丙氨酰胺按1: 1混合时,混合物的熔点 最低(27T),同时,况-苄氣羰基-L-天冬氨酸乙酯和D-丙氨酰胺的任意摩
有关人员就甘草甜素或甘草粉对口腔三种主要微生物一Streptococci {mulans 和 sanguis )、Actinomyces ( viscosus 和 naeslundii)及 Bacleroides ( malrucholii )的影 响做了深入的研究。结果表明,相比于庶糖、匍萄糖或果糖来说,由于甘草甜素或 甘草引起的产酸里:明兄减少,微生物生长速度明a减慢。甘苹甜素还能冇效地抑制 微生物对蔗糖、匍萄糖或果糖的代谢,可作为碳水化合物代谢的潜在抑制剂。
2 -2 阿斯巴甜2种主要的分解途径 (1)水解生成天冬氦酰苯丙氡酸(Aap-Phc)和肀醇(McOH) (2)通过坏化作用生成《 (Asp-Phc)和甲醇 阿斯巴甜的主要分解产物图2 -4 在105?C、丨20弋和丨50尤下干燥阿斯巴甜转化成DKP的百分率 ?1 干燥状态下阿斯巴甜的稳定图2-5所示为pH、温度和时间对阿斯巴甜水溶液稳定性的综合影响。25T 时,它在PH4.3左右最为稳定,在pH3~5之间稳定性很好。图2-6和图2-7 所示为在40弋、80T及不同pH环境中该化合物的稳定性情况。在一定时间内, 通过使阿斯巴甜暴銪于高温环境中来观察其稳定性的变化情况。在图2 - 6和图