五通桥区低聚木糖
1965年偶然发现阿斯巴甜具有甜味之后,揭开了人类对二肽甜味剂的研究 序幕。阿斯巴甜在经历了长达15年的风风雨雨之后,终于在1981年得到美国的 批准使用。以阿斯巴甜为原型,人们研究了 1000多种与之相关的同型物,其中 不乏有实用价值和良好开发前景的甜味剂新产品。与此同时,还建立了甜二肽的 分子模型等基础理论。
Assadi - Porter等应用基因突变技术探索 Bragin甜味功能位点,发现蛋白的两个结 构K域对甜味活性至关重要:一是蛋白N端 和C端相互紧靠的区域,二是43位精氨酸 附近的可变环区。
甜蛋白的来源及性质
图4 - 29和图4 -30所示分别为A、B两种构象的体视图和叠加图。
(三)甜菊双糖A苷的稳定性与甜菊苷一样,室温下甜菊双糖A苷是很稳定的。在1001下维持22h,只 有11. 5%的双糖A苷水解成双糖苷B和葡萄糖。在同等条件下,甜菊苷却有 20.6%发生水解。Chang和Cook通过试验表明,在酸性环境中双糖苷A要比甜 菊苷稳定得多。含有双糖苷A的磷酸或柠檬酸饮料,在室温下贮藏3个月,未 见有任何分解现象。
八、三氣蔗糖的安全毒理学分析
需说明的是,本章集中讨论的数种人工合成甜味剂,指的是纯粹的人工合成 品,就连其合成原料都不是食品或食物的天然成分。这样单独列章的目的是为了 讨论上的方便,并不是说前面几章讨论的都是天然产品。事实上,前面讨论的部 分甜味剂品种,诸如阿斯巴甜、阿力甜和三氣蔗糖等,都属于合成产品范围内。 与本章不同的是,它们的合成原料,诸如天冬氨酸、苯丙氨酸、丙氨酸和蔗糖
2.受体蛋白识别部位人体甜味受体蛋白存在八个基本的识别部位,分别为B、AH、XH、G,、 G2、G3、04和0,识别部位由15个基本识别点组成,分别为B,、B2、AH,、 AH2、XH,、XH2、G,、E,、G2、Ej、g3、e3、g4、e4x d。
(二)质粒构建
图6 -2至图6 -5所示为25弋、90T温度下糖精钠/钙水溶液的相对黏度、 相对密度与浓度的关系曲线。