合山市甘草甜素
转糖苷反应的产物结构
大了它的应用范围。当阿斯巴甜与碳水化合物彻甜味剂(如蔗糖、果糖或葡 萄糖)混合时,产品能量下降不少而甜味却没有变化。当阿斯巴甜与强力甜 味剂(如糖精、甜蜜素、安赛蜜或甜菊糖)混合使用时,产品有时略带有苦 涩味,这可通过加大混合物中阿斯巴甜的比例来改善,改善程度随阿斯巴甜的 比例增大而增大。混合甜味剂协同增效作用与各组成甜味剂所占的比例及食品 配料系统有关。
尽管对三氣蔗糖结晶体X -射线的结构分析表明,在2 - OH和3' - OH之间 会形成一个分子内氢键,其中2-OH是质子受体,3'-OH是质子供体。但在一 个稀释的含水溶液中,分子内部的氢键很可能分裂,断裂开的部分可分别与螺旋 形甜味蛋白质受体中末端氨基酸残基上髙度缺电子的NH/ (AHr,下标i■是 指甜味蛋白受体,下同)和富电子的CONH2 (Br)形成外部氢键。因此,3'- OH/2 -0具备成为三氣蔗糖AH/B对组成的客观条件。
图1 -27所示为浓度的增加对开始作用时间(~)、持久性时间和反 应的主观强度(S/)的总体影响情况。主观强度曲线上达到平衡稳定时间时,所即与离子载体激发历程(the ionophor triggering mechanism)或与受体的快速平衡 结合,假如以表示受体分子,尺.表示受体一底物复合物的离解常数,[SQ]为 非专一性结合区(假定是不变的)外口水中停留的糖分子浓度,[SJ为非专一 性结合区内口水中的糖分子浓度,r为被激活的离子载体的比例(例如为 [SR] / [Ra\),并假定r与品尝人员的主观反应(S/0 (例如甜味觉的主观强 度SI)有关。在味觉上升阶段,S/?可通过下式计算:
明石等人分别用0. 28%、1.40%和7. 00%的甜叶菊水提取物喂养大鼠3个 月,发现处理组和控制组之间在行为、粪便外观、毛的光泽、食物摄取数堂以及 尿的成分等方面均没明显的差别,但7.00%组出现了明显的体重下降现象。两 组动物在血液等方面表现正常,经病理检查也未发现明显的差别。为此作者认为 用含0% ~7%甜叶菊提取物的饲料喂大鼠3个月没有毒性。
对甜味剂分子结构(特别是糖)的研究早已证实AH、B、X分子识别理论 的有效性,怛目前对甜分子与受体之间的真实结合情况了解甚少。甜分子似乎是 以极化形式或以一种特殊方式与受体紧密联系着。甜分子引人或到达受体的机理 是什么?为解释包含于甜味刺激中的各种化学感知过程,人们提出数种不同的机理其中主要的3种。
二肽甜味剂对N-端氨基有严格的要求,首先它必须是两性离子,而且必须 与带电基团保持一固定距离,因为只有这样的二肽分子才符合Shailenberger和 Acree提出的AH-B甜味理论模型。1972年,Kiei?在著名的Shailenberger甜味 AH/B模型上引人X基团,提出三点结合生甜理论(AH-B-X),该理论沿用 AH+为能提供氢离子以形成氢键的基团(区域),B-是能为构成氢键提供所需 氧负离子的基团(区域),此外,引人的X是通过亲水或疏水特性与上述两块区 域相交,并在甜味感知中起到强化作用甚至决定性作用的基团(区域)。
白云参(Phbmis beumicoides)生长在我国云南、四川和两藏等地,系唇形 科(Labiatae)多年生草本植物。1983年,日本Tanaka等人首先用丁醇从该植 物中分离提取出两种双萜糖苷——Baiyunoside和Phlomisoside I,它们的化学结 构如图4-39所示。