孟州市海藻糖
细胞90个。但PCLRE17的转化率很低,因此采用pCLRK16的CYH抗性基因或 经PCR得到相同基因用于莫奈林的表达。
由于安赛蜜水溶液的高度稳定性,因此很适合于应用在低能量和糖尿病患者 用的饮料中。单独使用的话,饮料中只要含有800~1000mg/L或更少的浓度就 可得到满意的甜味。安赛蜜还经常与果糖、葡萄糖、高果糖浆或蔗糖混合使用, 由于糖和安赛蜜相对高的稠度以及各自不同的口感特性,通常人们认为使用混合 甜味剂的饮料稠度大、黏度好。
R.COX + NH2R2— R,CONHR2 + XH (2-1)R,、R2分别指末端氨基和羧基带保护的氨基酸的非酸和非胺部分。根据X 的不同,反应可分为三类:当X为一OH时,为水解反应的逆反应即缩合反应; X为一 NH2时,为酰胺的氨基分解反应(转酰氨基反应);X为一OMe或一 OEt 时,为酯的氨基分解反应(也可称酯化反应)。其中缩合反应最重要也最适于阿 斯巴甜前体的合成,将作详细介绍。
糖楮钠-阿斯巴甜-甜蜜素钠(1:5:8)混合物与蔗糖在水溶液中的甜味分布 --蔗糖一糖格钠.W斯巴甜与甜蜜素钠的混合物
至2008年,包括我国在内世界上已有100多个国家邮-2丨安赛蜜的 允许使用。
通过对各种卤代脱氣蔗糖构效关系的研究和比较,可以总结出如下几个 规律:
显然,具有显著a-半乳糖苷酶活力的酶制剂都是从霉菌菌丝体中获得的。 在5个具有最强的水解TCR活力的筠菌中,有4个是从W.wVwcefl中获得的,有 1个是从C. muscae中获得的。其中Af. vitmcea ATCC 20034在所有被测试的微生 物中,对TCR具有最高的水解能力。从该微生物中提取的a-半乳糖苷酶(EC 3.2.1.22)不含转化酶的活力,目前已在甜菜糖精炼中被用来水解棉籽糖。它还 可以被固定化,此时对TCR则有更强的水解能力。
甜菊苷?Rebusoside 一~?甜菊双糖A苷??甜菊双糖B苷
现在,人们正努力研究以期分离出能引起上述反应的专一微生物。已发现很 多细菌具有分-葡糖犴酸酶的活性,能将甘草甜素水解成甘草亭酸。只有两种细 菌可将3 -脱氧-18 -卢-甘草亭酸还原成甘草亭酸或3 -表-18 -甘草亭酸。 从人的新鲜粪便中分离出的瘤符球歯属(Riimirwcoccus)具有水解甘草甜素生成 18 -P -甘草亭酸的功能,另外可将3 -脱氢-18 -甘草亭酸还原成对映体 3-表-18-0-甘草亭酸的梭状芽孢杆菌(Clostridium)也是从人刚排出的粪便 中分离出来的。这两种细菌的混合体能将甘草亭酸异构成3 -表-18 -办-甘草 亭酸,反过来也如此。这一过程可能是通过氧化中间体3-脱氢-18-/3-甘草 亭酸而进行的。甘草甜素转化成3-表-18-分-甘草亭酸是分几步进行的,其 中的终端异构物(isomer)是几种细菌的?种产物。所有变化可概括成:甘草甜
Brazzein最早由Ming和Henekant于1994年分离得到,它是从非洲植物Pen- tadiplandra Brazzeana Baillon的果实中提取得到的可溶性甜蛋白,甜度是鹿糖的 500倍,后味比糖精弱。