新城区果糖
图2-8S所示的三种阿斯巴甜类似物均具有强力甜味,其中,图2-88 (1)的甜度为蔗糖的1200倍,图2-88 (2)和(3)均为二肽苄胺,甜度分别 为蔗糖的1300和1500倍。经X射线衍射和核磁共振(NMR)分析,发现图2- 88 (1)在水溶液中有六种构象,两种呈L型,另外四种呈延展型。这六种构象 均对其甜味的产生有贡献,这与图2 -87所示的二肽化合物呈味三维模型所推导 出来的结论完全吻合。
第三章庚精衍生钾
性、产品的分析方法及食用安全性等很重要。弄淸了嗦吗甜的氨基酸顺序与形状 后,就可由此研究分子结构及各氨基酸的变化对产品口感特性与溶解性等方面的 影响悄况,进而可更深人地探讨该物质甜味刺激的基础理论。
七、利用棉籽糖水解法酶法生产三氯蔗糖
二氢查耳酮的埃姆斯筛选试验表明,它不具任何诱变活性。小鼠试验表明, 该化合物不会引起骨髓中微核红色细胞出现频率的变化。
蔗糖醚化和脱氧衍生物的甜度变化,也证实了以上推断的正确性。如蔗糖的 4 -脱氣、4 -0 -甲基衍生物均有甜味;而当蔗糖分子C -3'位上的羟基被酯化成 3#-0-乙酯蔗糖时,由干掩盖了生甜团的AH基团,因此生成物不具有甜味。这 些结果均与以上确定的蔗糖甜味三角形基团的结论一致。此外还发现,3-酮基-蔗 糖在甜度h和庶糖相似(保留有蔗糖AH、B双官能实体),而蔗糖C-3位上的差向 立体异构体异鹿糖则完全没有甜味。为此,我们甚至可以预测出3-0-甲基蔗糖成 该是甜的,而2 - 0 -甲基蔗糖衍生物如2 -脱氧蔗糖或2 -酮基-蔗糖必然不甜。
最近,Keisuke ho等成功地发明了一种有效生产具味道修饰活性的f:组奇异
安赛密在大多数宥机溶剂中,溶解度都很低,详见表6-5。
酯化反成的条件还依赖于酰化试剂的特性。蔗糖和乙酸酐在碱性条件(如 吡啶溶液)下很容易反应,结果生成较高得率的蔗糖单酯化物。但在有水存在 且为强碱性的条件下,蔗糖和乙酸酐反应更容易生成多酯化物。尽管蔗糖的酰化 反应也可以在酸件环境中进行,但酸性环境容易导致蔗糖的水解。值得注意的 是,蔗糖在吡啶溶液中与乙酸酐作用,虽然可以生成较高得率的蔗糖单酯化物, 但单基团保护法的成功不仅取决于生成蔗糖单酯化物,还要求单酯化物尽可能以 S-6-a为主。因此,选择蔗糖和乙酸酐在弱碱性(吡啶溶液)条件下反应,以 保证生成高得率的蔗糖单酯化物。