库伦旗二氢查耳酮
莫奈林娃从D. cumminsii的浆果果肉中提取出的甜味蛋白一般用水法抽提, 抽提液经离心分离、超滤浓缩后用离子交换色谱法提纯楮制,再经超滤脱盐后冷 冻干燥。起初,1kg浆果只能获得100?150mg的莫奈林,现在的提取得率已提 髙至3~5g。大批量处理时,可使用分批吸附法。先将水抽提液与分散在 0.02nu,l/L醋酸铵缓冲液(PH5.0)的吸附剂CM - Sephadex C25淤浆混合,接 着用水反复冲洗淤浆达到纯化的目的,然后用0.02mol/L NaCl溶液将吸附在 Sephadex上的莫奈林洗脱下来,超滤浓缩后冷冻干燥。这样分离得到的莫奈林, 若在离子交換色谱柱上分别用NaCl浓度呈梯度上升的PH7. 6和PH8. 2缓冲液进 行洗脱,还可进一步分级成5种纯组分,依次称为莫奈林I ~V,其中最主要的 是莫奈林IV。
其罝换过程可简单表示为:
阿斯巴甜分子中的生甜闭尽管AH、B甜味理论能够很好地解释已知的所有甜味化合物的甜味特性, 但这种理论仍然遇到了诸多挑战:①虽然在甜味分子中都可以找到适当的AH、B体系,但许多拥有AH、B 体系的化合物并不甜。②AH、B理论可以解释甜味剂的甜味特性,却不能解释高效甜味剂的高效 甜味特性。1972年Kier在研究1 -烷氧基-2-氨基-4-硝基苯(图丨-7)时,引人 了另一分子特征即疏水(亲油)结合基团X,于是形成了甜味三角形理论 (AH、B、X理论)Q X距离AH的A约0.35nm,距离B约0.55nm。后来Hough 也认为除AH、B系统外,还应有一个亲油性或疏水性的第三连接点,这就承认 了 Kier的甜味三角形理论(图1-8)。Shallenberger本人也修改了他的理论,用 一个三角形概念来描述对映体的甜味(图丨-9)。丨-烷氧基-2-氨基-4-硝 基苯的高甜度可以解释为其1位基团的极化性,这个1位是“第三连接点X”, 它和硝基(B)、邻位的氢(AH)联合产生甜味。在D-氨基酸中,缬氨酸、亮 氨酸、色氨酸和苯丙氨酸都具有比较强的甜味,这是由于它们都含有疏水基的缘 故。因为甜味分子的琉水性基能与甜受体膜的疏水性部位相结合,使甜味分子易于 被甜受体膜所吸附。可以认为,亲油-亲水平衡是决定一种分子甜度的重要因素。
表S-19 仙茅蛋白提纯工艺
早在100多年以前,人们就知道对位乙氧基苯脲具有甜味,甜度是蔗糖的200 倍。该化合物在美同曾一度允许使用,后由于发现有诱变性及毒性而被禁止俾用。
(4)软体pAV7-丨中含澜《家抗性标记;栽体pJM3和pJK43b丨中含腐伊霉家抗性鉍记。
七、倍半萜烯化合物
高效甜味剂的优点,集中体现在:①化学性质稳定,耐热、酸和碱,不易出现分解失效现象,故使用范围比 较广泛。②不参与机体代谢。多数高效甜味剂经口摄入后原原本本地排出体外,不 提供能量,适合糖浓病人、肥胖症人和老年人等特殊营养消费群使用。③甜度较高,-?般都在蔗糖甜度的50倍以上。④价格便宜,等甜度条件下的价格均低于蔗糖。⑤不是U腔微生物的合适作用底物,不会引起牙府龋变。
对阿斯巴甜及阿斯巴甜盐酸化物的晶体结构作了分析,沿着肽主链的键几乎 都是反式的。根据Goodman等人上述的观点,阿斯巴甜旁链优先存在的构象是 F.D,,而阿斯巴甜盐酸盐优先存在的构象是FBDI。在天冬氨酰羧基 和胺基呈反式存在,因此不是活性构象。相反,Gorbhz认为FuDi是活性构象, 因为它最符合Kier的甜味三角形模式。然而,Kier的三角形模式是根据硝基苯 胺而不是二肽确立的。Heijden等人认为二肽的甜味三角形要比硝基苯胺的大, 因此FnDB构象最符合。另一密切相关的化合物是阿斯巴甜的LiBr复合物,结晶 状态以F,D■为优先构象,所以在固体状态下,阿斯巴甜及其HC1盐、UBr盐的 优先存在构象均不一样。
库伦旗二氢查耳酮
展开阅读全文