桃江县纽甜
钠溶液,合并到有机相中。无水硫酸钠十燥,过滤,蒸馏得6-甲基-3,4-二
转糖苷反应的产物结构
用lOOmmol/L碳酸氢気透析3h 在4~5h内用蒸馏水洗涤5次
如图2 -30所示,一瓶350mL使用阿斯巴甜的碳酸饮料含冇90nig苯丙氨 酸,而其他常食品中苯丙氨酸的含量大大髙于90mg,即使是一日三餐经常食 用的熟米饭,苯丙氨酸含量也髙达260mg。如图2-31所示,一个9岁儿童每曰 从日常膳食中获得的苯丙氨酸典型数世,大大高于由阿斯巴甜中获得的苯丙氨酸 虽。可以恃定地说:即使在髙摄人虽的情况下,阿斯巴甜中苯丙氨酸对PKU患 者构成的威胁,远远低于同样从日常食品中掛入的苯丙氨酸日常食品和含阿斯巴甜饮料中的苯丙衩酸含铍H常W斯巴甜 图2-31 一个9岁儿童每天从日常食品和阿斯巴甜中获得的苯丙氨酸的典坳数镦
图2 -37由单晶X -衍射法所推出的纽甜晶体中疏水取代基的U ■构象
甜菊苷与乳酸、淀粉或葡萄糖混合可降低甜菊苷产品的吸湿性。据说往浓缩 蔗糖或葡萄糖溶液中添加甜菊苷可加速其结晶过程。有些填充剂除了可作风味掩 盖剂或控制甜菊苷的湿润性外,还可使其用于工业化操作,这类物质有淀粉和蔗
(4)用在水果加工上不会影响水果的自然风味。
制备三氣蔗糖的核心在于对活泼的C - 6位羟基进行保护,使之不被氣化。 所谓单基闭保护法,就是只对蔗糖分子8个游离羟基中的C-6位羟基进行专一 保护,然后直接进行选择性氛化。该方法可以使反应过程大幅度简化,但一般需 要髙效的色谱分离操作。
在充分考虑到Kier-Shallenbergei?模型的尺寸范围和蔗栅的分子结构后, 我们可以认为蔗糖分子内有两种可能的三角形生甜闭系统:X=4-H、AH = r-0H 和 B-2 - 0,以及 X=4-H、AH =3f - 0H 和 B =0-2,它们均 是以顺时针方向排列的。为了确定这一推定,可通过倒转蔗糖C-4上的手 性,得到半乳糖-蔗糖(图3-39),其甜味完全丧失;而4-脱氧蔗糖 (图3-39),仍具有甜味。这表明,亲水型4-羟基-蔗糖的构型对维持分 子的甜味很苽要。蔗糖上C-3的构型也很觅要,因为C-3差向立体异构体 (称异蔗糖〉没有甜味。造成这种差异的原因是轴向上的C-3羟基不能被 味莆甜受体所接纳。
图4-15所示为甜菊双糖苷(Rebmidioside)的化学结构。1982年田中报道 它(包括双糖D、E苷)的甜味特性比甜菊苷来得好,所带的苦涩味也要少得 多,但守田并不完全同意这个观点。他们两人一致认为甜菊苷带有很强的苦味和 不愉快后味,且甜味来得太慢。与田中不同的是,守田认为双糖A苷不带任何 苦味或不愉快后味,其甜味特性也很像蔗糖。但Schiffman不同意田中和守田关 于甜菊苷和甜菊双糖苷甜味特性的评价,他认为甜菊苷和双糖苷都带有很强的苦 味和金属后味,就像糖精钠一样。一般的观点是双糖苷A在甜味特性上比甜菊 苷更接近于蔗糖,所带的后味也较小。日本Maruzen医药公司认为,同时包含甜 菊苷和双糖A苷的甜菊提取物的味觉特性很像蔗糖,唯一不同的是提取液的甜 味来得较慢,去得也较慢。该公司还特地将含有甜菊双糖苷和50%甜菊苷的甜 菊提取液命名为MarumilOn50,并已商业化生产。日本Tame生化公司也生产一 种类似的产品,商品名为Stevix。MarumilOn50溶液的甜度随着浓度的增大有所 下降,但在5%盐溶液中其甜度明显增大(表4-7)。尚未见到有关甜菊双糖C、 D、E苷甜味特性的报道,但我们暂且假定它们与甜菊双糖A苷相似。