长宁县甘露醇
图3-丨3 -氣蔗糖仝基团保护合成法的主要步骤 T. 三苯甲基 AcO——乙醃基
蔗糖(:-6位羟基的乙酰化保护反应可看作是乙酸酐的醇解反应,吡啶是此 类反应最常用的催化剂。吡啶催化的乙酸酐醇解反应是亲核类型的,其中包含2 个连续的四面体机理。反应速率与蔗糖和乙酸酐二者的浓度呈正比。增加蔗糖的 用量有利于反应向正方向进行,同时也有利于蔗糖单酯化产物的形成。相反,尽 管增加乙酸酐的用最也有利于正向反应的进行,怛过萤的乙酸酐势必造成不受欢 迎的蔗糖多酯化产物处于优势地位。
甜蛋白最初均从植物直接提取,但这种生产方式有较多不足之处。利用基因 工程生产甜蛋白不受季节、产地等影响,是一种很宥前途的生产方法。目前这方 面的研究相当活跃,除嗦吗甜、莫奈林这方而的研究成果显著外,其他甜蛋白利 用基因工程生产也在进行中。如美国Nek丨ar Worldwide公司已将Brazzein表达至 玉米中,丨t转基因玉米中能提取lkgBmzzein。美国生物资源国际公司正研究通 过种植和转基因方法生产Miraculin。据报道,H本Asahi Denka Kogyo公司和生 化研究所已将Curculin在转基因植物和大肠杆菌中表达。
0=C 0 ^^ 0=C OH
②甜菊苷被肠内微生物分解成甜菊醇和葡萄糖;
三、纽甜的甜味特性1991年,美国纽特公司通过对强力甜味剂结构-甜度关系的广泛研究而提 出假说,认为人体的甜受体(HSR)可能含有2个完全不同的疏水结合位 (HBP),两者相距丨rnn。当时,普遍认为阿斯巴甜是通过它的苯环与甜受体的一 个疏水结合位之间的疏水反应而作用于甜受体的。根据这种双疏水结合位假说, 他们认为阿斯巴甜的疏水基衍生物有可能作用于假设中的第2个疏水结合位 [图2-42 (1)]。从分子模型的分析中,可以判断使阿斯巴甜作用于假说的第2 个疏水结合位的最好、最简单方法就是在它的氨基上结合以疏水取代基。通过多次 尝试,他们发现了几种斤-烷基或/V-环烷基取代基可以作用于假设中的第2个 HBP (表2-24)。其中最有效的取代基是3, 3-二甲基丁基[图2-42 (2)], 结合这一取代基后的阿斯巴甜,以摩尔数汁与2%蔗糖溶液相比甜度由原来阿斯 巴甜的约170倍,增长到纽甜的约11000倍,以质量计则为由约200倍增长到约 1_倍。甜度的大大增加,证实了在人体甜受体中第2个独立疏水结合位的 存在。
基于Searle公司的开拓性工作,Ariyoshi提出L -天冬氨酰胺的甜味模型理 论,这个酰胺是用具有合适立体构象的小基团R,和大基团K2进行《-取代的。 通过对这种模型的改进,发现刚性带有适当分支的R2基团能明显提高化合物的 甜度。所有的高效甜味剂(甜度大于蔗糖的1000倍)至少有一个酯基或酰胺基 团作为R,或R2,而且肽键上不能有取代基。天冬氨酰残基可通过氨基的酰化作 用来改性,这样有时会产生非常甜的化合物。
二、蔗糖的酯化、醚化和脱氧化衍生物