鄂托克旗爱德万甜
纽甜在用萤范围内对溶液的黏度(在5g/L浓度下小于5mPa?S)、表面张力 (在0.015g/L浓度下约为65mN/m,5g/L浓度下约为38mN/m)和pH (在 0.158/1^的浓度下为7.01,lg/L浓度下为5.8)的影响可忽略不计。它极小的黏 度不会对混合产生任何影响,它对水溶液表面张力和pH的影响可忽略不计,如 在碳酸饮料中不会引起过分起泡的现象。
(五)甜菊苷对动物繁殖能力的影响
自然界存在各种变味剂,有的使水变甜(如朝鲜蓟),有的使酸味变成甜味 (如奇异果素,参见本书第五章),有的变苦甜味为酸味(如Bunudiadulcijlca)。 人们在吃蔗糖(不是糖精)之后会感到水有酸味,吃盐后感到水有酸苦味,在 适应酸苦味之后又感到水有甜味,在适应酸味后感到水有咸味。甜味肓患者对不同甜味剂感到有苦、酸或咸味。苦味肓患者对含有一C一NH和多硝基苦剂感 到有甜、酸味或淡而无味。用电极同时刺激味感相同的两个味细胞,则味感增 强,用以刺激味感不相同的两个味细胞,则这两种味感彼此抑制。这些特殊现象 往往很难用单纯的化学观点来解释,这是摆在有关研究者面前的一大难题,也是 对科学丁作者的莫大挑战。
旋= 1:12. 5,w/w)溶解时,可以尽可能地避免在反应过程中产生蔗糖脱氧环化 衍生物。因此,本研究仅以蔗糖和乙酸酐的摩尔比、反应温度和反应时间等三个 因素,分别对S-6-a的合成条件进行优化,结果如图3-29至图3-31所示。图3 -29蔗糖和乙酸酐摩尔比对取酯化反应效果的影响(-丨8*C、7h)图3-30反应温度对单酯化反应效果的影响[蔗糖:乙酸酐=0.95 (mol/mol), 7h]时 N/h围3-31反应时间对单酯化反应效果的影响[蔗糖:乙酸酐=0.95 (mol/mol),25 *C]
2.非均匀酶催化反应体系的产物分离
有关人员就甘草甜素或甘草粉对口腔三种主要微生物一Streptococci {mulans 和 sanguis )、Actinomyces ( viscosus 和 naeslundii)及 Bacleroides ( malrucholii )的影 响做了深入的研究。结果表明,相比于庶糖、匍萄糖或果糖来说,由于甘草甜素或 甘草引起的产酸里:明兄减少,微生物生长速度明a减慢。甘苹甜素还能冇效地抑制 微生物对蔗糖、匍萄糖或果糖的代谢,可作为碳水化合物代谢的潜在抑制剂。
NHSO,H ? N(C2H5)j NHSOjH ? N(CjH,),
另一方面,分子内氢键对提髙甜味化合物甜度的间接贡献还表现在:如果甜 味分子的AH基团在形成分子内氢键中扮演受氢体的角色,则可以大大增强AH 基团在和甜受体B基团发生氢键键合时作为H供体的供H能力,从而使甜味分 子与甜受体的结合更为紧密,并最终导致甜度的增加。相反,如果甜味分子的B 基团在形成分子内氢键中扮演氢供体的角色,也会出现相同的效应。例如在 4',6^-二氣蔗糖中,该化合物的疏水性因氣替代而大大增加,并因C-T位上 羟基仍和C-2位上羟基保持分子内氢键连接而使后者受氢能力大大增强,因此 它的甜度可达到蔗糖的3500倍。卤代蔗糖普遍都能建立这种形式的氢键,有些 化合物如三氣蔗糖在二甲亚砜溶液中也存在上述氢键。