湖里区水苏糖
相反,当以2-0H/3-0为AHS/BS对时,甜味蛋白受体和三氣蔗糖的两个分 子间氢键AHr (NH3J……Bs (3-0)和B, (C0NH2)……AHS (2-0H)的距 离和键角分别被迫成为(0.29±0.01) nm, (180±16)。和(0.28±0.01) nm, (160±20)°,如图3-54所示。此时只有4-C1 (X5S) 一个疏水部位和受体 < 氨 基酸残基侧链宥着良好接触,而其他两个疏水部位r -C丨和f -C1却处于远离 与受体相互作用的位置。而且,4’-0H也远离受体X:氨基酸残基的侧链,使得 4f - OH与受体X丨氨基酸残基的酸性侧链之间不可能形成重要的额外氢键。因 此,选择2 - 0H/3 - 0作为三氣蔗糖分子的AHS/BS对并不合适。
尽管可以“辨别”出蔗糖8个羟基之间的微小差别,但这距有效利用这 些细微差别,以避免蔗糖在部分衍生过程中的产物复杂化还很遥远。严格控制 反应条件,包括降低温度,调节PH,使用大分子取代基团等手段,尽管可以 提高蔗糖部分衍生反应的专一性,怛各种副产物的产生仍将不可避免地给分离 工作带来巨大闲难。因此,充分考虑到这些特性,在反应路线的设计中选择某 些必要的方法,保护蔗糖分子中某些特定位置1:的羟基,而让活性较小的羟基 参加反应,最后再以轻度的反应条件将受保护位置上的基团除去,从而达到预 期的目的;>
[165]和[166]。反式化合物[丨65]是苦的,这与C02Me基团的化合物 [164]相一致。然而顺式化合物[丨66]中的一个非对映体有甜味,是蔗糖的 100?200倍。King等人总结认为,芳香环必须以顺式方式连接于肽键上才能得 到有甜味的化合物。相比较而言,与之有关的顺式脱氢阿斯巴甜图2-80 二肽化合物[3]及[163] ~ [167]的化学结构冬氨酰-顺式-脱氢苯丙氨酸甲酯)不具甜味。[丨66]与[167]两者间的这种 差异,是由于构象上的微妙差异和电子效应的不同引起的。
FSte合成模型的常数估计值如表4-15所示。各条件下,模型[式(4-1) 至式(4_6)]计算结果与实验结果的比较如图4-24所示。各条件下甜菊苻和图4 - 23蔗糖水解试验结果和模沏计算结果 (I) o =20mmol/L (2)=40inmol/L (3) ^ =20mmoI/L, cclu。=40mmol/L (4) =20mmol/L, cFnj 0 =40mmoI/I.注:O、4、尽分别为葳糖、果糖、葡萄糖的实验结果;实线是根据蔗糖水解反应榣型[式 (4-7> -式(4-9)]计算的结果3
313-10三氧蔗糖相对于蔗糖的甜度 ■ - PH2. 75 _ o - pH3.1 --A…plf7. 6
1.棉子糖浓度对产物的影响
阿斯巴甜可作为甜味剂和风味增效剂应用于各种食品、饮料或医药品,表 2-10为其应用范围。由于它是一种二肽化合物,进人机体内可被消化吸收,并 提供16. 72kJ/g的能量,因此美国FDA将之列人营养型甜味剂中。
阿力甜(Alitame)是由L-天冬氨酰、D -丙氨酸和C -端酰胺3部分组成, 它是用酰胺键替代阿斯巴甜分子中不稳定的酯键,使得化学稳定性得以显著提 高。用阿力甜增甜的部分酸性饮料,经长时间f*:存后会出现一些不配伍现象,感 官分析发现有明显的硫味。液体产品中可与阿力甜反应产生异味的物质,多数是 H202或NaHSO;等。截止2008年,阿力甜尚未被美国FDA认可,全世界只有中 国、澳大利亚和墨西哥等少数几个国家批准使用。1996年,JECFA确定的阿力 甜AD丨值为1 mg/kg。
在C-6’位上的进一步氣化能提高甜度,制得的4,6^-三氣-4,1',