涵江区甘草甜素
素,-/3 -甘草亭酸-—^3 -脱氧-18 -/3 -甘草亭酸L3 -表-18 -甘
曰常膳食中通常含有很髙浓度的天冬氨酸,天冬氨酸对于许多组织(包括 肠和肝脏)来说是非常重要的代谢物。然而,在20世纪70年代的一些研究表 明,给隔离的新生啮齿动物喂食商剂量的谷氨酸、天冬氨酸、半胱氨酸及其亚破 酸或磺酸衍生物时,在视网膜和脑室周围器官产生了急性神经元变性。为此, John Olney最早提出“兴奋性毒素”的概念。在过去的30年中,人们经常强调 曰常食品中消耗的谷氨酸、天冬氨酸等酸性氨基酸都可能对脑室外器官造成损 伤,尽笆还没见到这方面的人类兴奋性毐性病变的实例。这是一个争论十分激烈 的研究领域,有人认为,人体能量代谢时的异常,钙或自由基缓冲系统的损伤, 加上内源或外源兴奋性毒性的联合作用,有可能对人类神经进行性疾病中神经元 的丢失起一定的作用。
细致的复查。基于关键试验准确可靠,毒理试验报告可以接受,为此专门成立了 一个公众问洵局(Public Board of Inquiry,PBOI),专门负责答复反对者的意见, 并接受所有关心者的咨询,这项工作一直持续到丨980年丨月30日为止。这期 间,美国纽特公司共花费f 2000万美元的安全评价费和数百万美元的公众咨 询费。
食品添加剂可接受的每日摄入量是在动物试验的无毒副作用水平基础上外加 100倍的安全系数,由政府管理机构和专家委员会来制定。可接受的每H摄入摄 不是一个安全阈值,是指在人的一生中每天可以安全食用该添加剂的限萤,但是 偶尔超过可接受的每日摄人最也是可以的。
根据Vignais等人的报道,甜菊苷在小鼠肝脏线粒体中具有抑制氧化、磷酸化 的作用。Kelmer Bmcht等人报道甜菊醇和异甜菊醇会影响完整细胞线粒体的功能。 甜菊苷和甜菊醇生糖苷穿过细胞膜的速度很慢,对不完整细胞的线粒体不显示任何 活性。然而,有人发现糖苷配基和甘油配基会抑制血浆隔膜(plasma membrance) 的己糖载体,这表明所有的甜菊苷衍生物均会影响碳水化合物的代谢。
阁5-23野生型Brazzdn的带状图
日本味之素公司的研究人员采用逐级固相肽合成法进行莫奈林的非生物合 成。首先,分别地合成A链和B链,然后混合A链、B链。当A链和B链以1:1 的比例混合时,会导致大里的不发生反应的A链和B链残留。当A链和B链以 1:1. 9的比例混合时,可获得产量高达25. 7%的合成莫奈林。单独存在的A链或 B链不含甜味,而合成的莫奈林却有显著的、持久的甜味。
图3-19 4-PAS浓度对 6-PAS得率的影响
大了它的应用范围。当阿斯巴甜与碳水化合物彻甜味剂(如蔗糖、果糖或葡 萄糖)混合时,产品能量下降不少而甜味却没有变化。当阿斯巴甜与强力甜 味剂(如糖精、甜蜜素、安赛蜜或甜菊糖)混合使用时,产品有时略带有苦 涩味,这可通过加大混合物中阿斯巴甜的比例来改善,改善程度随阿斯巴甜的 比例增大而增大。混合甜味剂协同增效作用与各组成甜味剂所占的比例及食品 配料系统有关。