乌拉特中旗安赛蜜
阿斯巴甜分子中的生甜闭尽管AH、B甜味理论能够很好地解释已知的所有甜味化合物的甜味特性, 但这种理论仍然遇到了诸多挑战:①虽然在甜味分子中都可以找到适当的AH、B体系,但许多拥有AH、B 体系的化合物并不甜。②AH、B理论可以解释甜味剂的甜味特性,却不能解释高效甜味剂的高效 甜味特性。1972年Kier在研究1 -烷氧基-2-氨基-4-硝基苯(图丨-7)时,引人 了另一分子特征即疏水(亲油)结合基团X,于是形成了甜味三角形理论 (AH、B、X理论)Q X距离AH的A约0.35nm,距离B约0.55nm。后来Hough 也认为除AH、B系统外,还应有一个亲油性或疏水性的第三连接点,这就承认 了 Kier的甜味三角形理论(图1-8)。Shallenberger本人也修改了他的理论,用 一个三角形概念来描述对映体的甜味(图丨-9)。丨-烷氧基-2-氨基-4-硝 基苯的高甜度可以解释为其1位基团的极化性,这个1位是“第三连接点X”, 它和硝基(B)、邻位的氢(AH)联合产生甜味。在D-氨基酸中,缬氨酸、亮 氨酸、色氨酸和苯丙氨酸都具有比较强的甜味,这是由于它们都含有疏水基的缘 故。因为甜味分子的琉水性基能与甜受体膜的疏水性部位相结合,使甜味分子易于 被甜受体膜所吸附。可以认为,亲油-亲水平衡是决定一种分子甜度的重要因素。
蔗糖那种独特而又特別令人满意的甜味,似乎不能用葡萄糖和果糖基之间简 单组合来说明,这两个糖基可能在固定倾斜角度方向上形成分子内氢键。当用氣取 代羟基时,发现它的甜度增加了数百倍,这明显是由于几种不同类型氢键复杂的相 互作用的结果。吡喃葡萄糖基的c-2羟基起AH作用,而B则是呋喃果糖基 c-r的氣取代基团。甜度大幅度增加的原因,在于以椅式构象为主的吡喃葡糖 残基C-4轴向取代基充当了亲油性基闭[图1-15 (1)],另一方式是把C-4 位置上的连接基团对换在呋喃果糖残基的C-f位置上C [图1-15 (2> ],这 就解释了 1',6’ - 二氣和4, lf,6,-三氣衍生物甜度增加的原因。4,6'-三氣-4,1',6'-三脱氧半乳蔗糖(即三氣蔗糖,SUCral08e)的情况也是这 样,因其两个生甜闭的相互增效作用,明显强化了该化合物的甜度增大效果。它 是此系列化合物中最甜的一种。在这两种情况中,分子模型表明AH、B、X系 统十分接近于Kier三角形的相互间距。
直到最近,有关蔗糖甜味与其分子结构的关系问题人们仍未弄淸楚,通常认 为蔗糖的甜度与其分子中的某些羟基团有关。在过去10年内蔗糖化学的飞速发 展,使得人们冇办法专一地掩盖或取代某些羟基团来制备某些特定的衍生物,然 后通过味觉品尝以研究蔗糖的甜味与结构的关系。结果表明,蔗糖分子内葡萄糖 和果糖的某些特定羟基团参与了生甜团(glucophore)。而且发现,用疏水性的卤 素取代基来替代某些亲水性羟基,可大大提高蔗糖的甜度3
甜二肽同型物的第二个手性特征,体现在较低的那个手性中心基团的排列 上。甜化合物可以接纳R,上的小取代基和&上的大取代基,在某些情况下,有 的氨基酸可以是D-型,如L-天冬氨酰-D-丙氨酸酯,其余的一般都是L- 构塑,如L-天冬氨酰-L-苯丙氨酸甲酯(阿斯巴甜)。这两者均符合Ariyoshi 的模型V。如果像VI—样,&和R2的定位正好相反,则其化合物就不具甜味。 例如,作为天冬氨酰苯丙氨酸甲酯的一个非对映体化合物,L-天冬氨酰-D苯 丙氨酸甲酯就不具有甜味。即使天冬氨酰基部分的立体化学构型正确,但R,和 R2的不正确定位使其丧失了甜味。
目前,研究人员已完成了对马槟榔n的初级晶体学分析,而对马槟榔n结构 测定工作仍在进行当中。研究表明,马槟榔n由两条多肽链(a链和b链)非 共价紧密地连接在一起,各链氨基酸数目分别是33、72,甜度是等质量蔗糖的 100倍。A链的大多数氨基酸为疏水性氨基酸,B链中也含有很多疏水氨基酸。 两条链中Glu和/或Gin和Arg数量较多,且两条链均不含Ser、Thr、Tyr、Met 和Lys。马槟榔II含有8个半胱氨酸,但没有发现游离巯基,因此马槟榔II虽分 子相对较小,但可能形成了4个二硫键,其高度的热稳定性可能归因于此。比较 发现马槟榔II和嗦吗甜I、莫奈林、Curculin和奇异果素的氨基酸序列没有明显 的相似性,但它和arabidopsis thaliama 2S种子储藏蛋白,尤其是2S A蛋白AT2S 间的序列有很髙的相似性,而后者没有甜味。2S白蛋白AT2S3和A链4 ~20位 氨基酸中70. 6%匹配,和B链7 ~69位氨基酸有52.4%匹配,并且这两种蛋白 的8个半腕氣酸的位置相同。不同植物如/4. fAa/iana、Brassica napus s Ricinus communis和Bert— excelsa的2S白蛋白的序列髙度相似,因此可以认为马槟 榔II是具有甜味的2S白蛋白。的2S白蛋白的小亚基(A链)的某 些序列和嗦吗甜相似,但2S白蛋白的这部分序列与马槟榔n没有相似性。
在酒精中,安赛蜜的溶解度很小,20弋时在无水乙醇中溶解度仅为lg/L。 但是,在乙醇中加入少留:的水可大大提高安赛蜜溶解度,所以安赛蜜溶在醇-水 混合液中作调味品或口腔卫生产品,不会发生溶解度问题。在水-乙醇混合液 中,溶解度随着含水里的增加而增大,在50%乙醉液中达到100g/L (表6-4)。 安赛蜜的稀溶液几乎是中性的。
在进行代谢研究的同时,人们还对它的药物动力学进行了研究。试验是在白 鼠、狗和猪身上进行的,最后也在自愿受试人身上进行。所有的受试动物和人体
4.对甜味分子空间结构要求的设想由于甜味感觉对底物的要求可以是小如CHC13分子,到大如多肽和大分子蛋 白质,因此可以认为,甜味化合物和甜味蛋白受体之间最初的相互作用,发生在 受体表面部分。对于那些与受体之间无疏水接触的甜味剂分子,由于这种表面吸 附之间的作用力相对较低,故其甜度也低,这也许就是糖和糖醉均不是很甜的原 因。对于那些与受体之间有一处或多处疏水键合的甜味剂分子,除了在AH、B 基闭上的两点接触外,更包含有空间上的疏水键合,这种更深层次的键合则很可 能发生在甜味蛋白受体中类似酶活性位点的“嵴”或“裂缝”中。
乌拉特中旗安赛蜜
展开阅读全文