六枝特区山梨糖醇
阿斯巴甜的酶法合成技术由于化学合成法专一性差,得率较低,故人们又致力于酶合成法的研究,以 期提髙得率并降低生产成本。酶合成法是使用合适的蛋由酶,将L-天冬氨酸 (氨基闭已保护或未保护)与L-苯丙氨酸甲酯缩合在一起。除此之外的操作, 与化学合成法一样。酶法合成的优点和缺点比较明显。酶法合成的优点:①转化率通常达95%以上,比化学法(一般仅70%)高很多;②且酶法只生成《-型产物,没有冷-异构体生成;③可采用外消旋化合物为底物,而在化学合成法中只能采用L型底物。
值酸法迁移会引起降解和副反应,如进一步生成3, 4,6,3\ f -蔗糖五 乙酸酯u有人发现在碱性条件下也可同样进行这个迁移过程,就报道的得率来看 均可达到85%以上,可选择的有叔丁基胺、三乙胺、四氢化吡咯、/V,/V-二丙 基胺和2-异丙基胺等。反应温度30?60t:,反应时间取决于温度和所用胺试 剂,在2.5 ~ 10. Oh间变动。惰性溶剂要求能溶解4-PAS,并可部分溶解6-PAS 并能较早将之结晶析出,使反应进行完全,例如甲苯、甲基戊酮和乙酸乙酯。其 反应机制可能娃胺夺去6-OH上的H,然后4、6位发生内酯反应。
[130](表2-59)具有甜味。后来,又相继合成出一系列的酰基-L-天冬 氨酰-a-酰苯胺和酰胺。但这类化合物中,只有/V-三氟乙酰基天冬酰苯丙氨 酸甲酯[131]的甜度接近天冬酰苯丙氨酸甲酯本身。不久又发现,某些情况下 的三氟乙酰化会消除甜味,如天冬氨酰苯异丙胺衍生物[132]就属于这种情 况,它的甜度为零。三氟乙酰化谷氨酰基衍生物[134]也没有甜味,丙二酰基 衍生物经三氟乙酰化后[133]甜味也丧失了。Kawai等人从分子构象上对上述 这些差异作了解释。在化合物[131]这种对a-氨基团的成功改进延续了 10年
(-)两相体系中Z-Asp-PheOMe的合成反应动力学 要定量分析两相反应,首先需弄淸下列关系:①固定化酶催化反应在水相中进行,因此需了解反应在饱和有机溶剂缓冲 液中的动力学和平衡关系;②底物和产物在水相和有机溶剂中的分配比;③分配比引起的水相pH变化;④水相、有机相之间物质传递产生的影响;⑤酶在界面吸附引起的变化。
乙烯乙二醉(乙烷-1, 2-二醉)具有甜味而乙醇没有甜味,因此,醇基 团被认为是维持甜味分子的最低要求。对于碳水化合物來说,相邻碳原子上的一 对羟基(即一个乙二醇基团)被确认是AH、B单元,其中一个羟基作为AH, 而另一个羟基上的氧原子作为B (图丨-4)。甜受体结合位是以氢键与甜分子相 结合的,因为它含有与AH、B系统相反的结构基团,如酰胺(N—H)和羰基 (C=0)结构以及羟基氨基酸等。Suami认为,L -丝氨酸和L -苏氨酸单元均 可作为甜受体蛋白a-螺旋的端残基来充填该甜受体,在此NH2基作为AH, 0H上的氧原子作为B (图1-4)。需要指出的是,在碳水化合物结构中所有乙 二醉单元的任一羟基均可作AH或B单元(假如它们可互换的话),但并不是所 有的甜味化合物(包括氨基酸)都是这样的,这就解释了为何D-型和L-型氨 基酸的甜度不同,而D-糖和L-糖的甜度相同这一事实。
在脉冲前,细胞经二硫苏糖醇(di丨hiothrehol,DTT)处理或在样品中加人载 体DNA都+能提高转化率。用标准醋酸锂程序(standard lithium acetate procedure) 将线性PCLRE2转化至CandUu utULs得到的转化率非常低,1网DNA的转 化体不到10个。
图2 -93带有芳香箪闭取代基二肽甜味剂的L-型构象图
如图2-75所示,一种称为“后向旋转”(rHminvereo)的肽改性法,是将 酰胺结构中通常的羰基和含氮基团颠倒过來。在现有条件下,是连接于内二酸衍 生物上已被酰化的1,1 - 二氨基烷烃来代替通常的酰胺键连基团。D-丙氨酰胺 经后向旋转后得到的化合物,其甜度可增至900倍(表2-51)。2, 2, 5, 5- 四甲基环戊基化合物[94]的甜度很大,而2, 2, 4,4 -四甲基-丨hietane [96]的甜度要弱一些。1, 1 - 二氨基烷烃部分的R或S立体异构体[94]与 [95],它们的甜度相似,但是,经二甲基化后的化合物[97],其甜度只有 [94]的一半。对于小基闭(如平基)来说,只要立体化学上允许就可进行双取 代。这对于以低成本的外消旋丨,1-二氨基烷烃来制备这些甜味化合物,具有重 要的实际意义。很显然,甜受体在接受“上面”基团时具有一定的灵活性。
构建的pRMll和pUMll中包含细菌质粒序列,因此经Bgl II酶切去除细菌 序列实现线性化后将促进载体在目标部位通过单交换取组(single crossover recombination)进行的整合,分别以质粒pCLRM216和pKMl 1所含的rDNA片段 和质粒pUMl 1所含URA3基因片段作为同源重组整合的目标序列。
六枝特区山梨糖醇
展开阅读全文