丰镇市索马甜
安赛蜜甜味感觉快,没有任何不愉快的后味,味觉不延留,感觉时间不比食 品本身的味觉长。高浓度时有时会感到略带些苦味,但在低浓度的食品中没有此 感觉。其水溶液的甜度不随温度的上升而下降。
Oapdh, C. uiilis和S. crrevisuic的3 -麻酸甘油酸脱筑麻启动子;
仙茅蛋白和奇异果素都具有变味特性,因此对它们进行专门的比较。前面提 及仙茅蛋白的抗血淸只与奇异果素发生微弱的反应,另还发现仙茅蛋白不与奇异 果素的专一性抗血淸反应,这表明仙茅蛋白的抗原决定子与奇异果素的不同。仙 茅蛋白和奇异果素含有5个相同三肽,而在一般情况下,这种情况的出现几率是 非常低的,因此有可能其中某个相同三肽就是变味活性位点。
有研究者用葡糖基转移酶GT - 1酶催化甜 菊苷改性,该酶性能与环糊精葡糖苺酶基本相似。它对葡萄糖、蔗糖+起作用, 对麦芽糖有一定程度的转化,这说明它只对a- (1—4)糖苷键起作用。将该酶 加至甜菊苷和可溶性淀粉的混合体系中,产物为甜菊苷分子上以《_ (1—4)糖 苷键连接上麦芽糖或葡萄糖基。
(8)对大鼠和狗的研究表明它对胰賍和血液中葡萄糖含量也没有不良 影响。
2-7中,水平线表示稳定性很好,垂直线表示稳定性很差、瞬间转化完毕而丧 失甜味。表2-2和表2-3表明,阿斯巴甜经得住高温短时杀菌或超髙温瞬时杀 菌过程,损失率很低。
和其他强力甜味剂一样,三氣蔗糖和受体间的相互作用只能发生在正对者受 体的、由疏水的C1和012基团组成的疏水面上。这样,在由C -2、C -3、 C-3’位上的三个羟基组成的6个可能的AHS/BS对中,又有3对AHS/B^P
至今,对二肽结构与甜味之间的关系已有了较深程度的认识,发现T很多甜 度大于阿斯巴甜10 - 100倍的同型物。对甜二肽化合物优先存在的构象问题员然 有争议,但也开始为人们所认识。有些文献偶尔还提到甜二肽的稳定性及甜味特 性问题。即使如此,为寻求高效、稳定、甜刺激类似蔗槲的新型二肽甜味剂而进 行的研究仍会继续下去,它将推动着人类对二肽甜味剂理论和实践的进一步 认识。
Shallenberger认为糖分子与甜受体AH、B系统的几何形状决定了两者间的 复合强度,甜味化合物的构象与构型对味觉刺激起取要作用。那些含有芳香残基 的刚性分子结构,如糖精和氨基硝基苯,如果它们的A—B轨道间距合适的话, 在这方面具有明敁的优势。因此,Shallenberger理论能够解释这些人工合成甜味 剂比蔗糖甜几百倍的事实。糖的甜味感觉只能持续数秒钟,说明其结合力较弱。 如果说甜味分子的立体化学结构对甜受体的配合程度决定其甜度大小的话,那么 甜味分子与甜受体相互作用的速率或许要比复合结构本身的持续性更为关键。
表3-‘