南充市纽甜
仙茅蛋白和奇异果素都具有变味特性,因此对它们进行专门的比较。前面提 及仙茅蛋白的抗血淸只与奇异果素发生微弱的反应,另还发现仙茅蛋白不与奇异 果素的专一性抗血淸反应,这表明仙茅蛋白的抗原决定子与奇异果素的不同。仙 茅蛋白和奇异果素含有5个相同三肽,而在一般情况下,这种情况的出现几率是 非常低的,因此有可能其中某个相同三肽就是变味活性位点。
②3个伯位羟基团脱去三苯甲基,消除屏蔽。
对三氧蔗糖来说,它以1-0H/2-0作为AHs/Bs对,而疏水部位lf- CH2 (Xs4)和甜味蛋白受体的第4个氨基酸残基(Xr4)作用,4-C1 (Xs5)和第5 个氨基酸残基(Xr5)作用,r-Cl (Xs8)和受体第8个氨基酸残基(Xr8)也 有一个接触。此外,三氣蔗糖果糖基上的&-C1在分子内氢键的作用下也与受 体活性位点发生相互作用,从而也扮演者一个疏水部位X的角色。甜味分子的 所有这些疏水部位与甜受体疏水部位的接触表面积及相互作用力强度共同决定着 甜味分子的甜度。
四、阿力甜的安全毒理学分析
鸡蛋淸溶菌酶娃唯一来源于非植物的甜蛋白,其生物学功能早已被详细研 究,可把它归于甜蛋A却不过是最近的事情。1988年,Maehashi和Udaka声称 鸡蛋清溶菌酶具冇明显的甜味,而其他来源的溶菌酶,如火鸡和中华鱉中的溶菌 酶也具有甜味,但甜味不同,或重些或轻些。相反,人体内的溶菌酶却是没有甜 味的。不同溶菌酶的氨基酸序列都与鸡蛋清溶菌酶的相似,但这些溶菌酶的序列 与其他甜味蛋白之间都没有明fi的同源性。鸡蛋淸溶菌酶的甜味阈值约为 10jjumoI/L,比嗦吗甜和莫奈林的阈值高200倍。溶菌酶的碱性有可能在其甜味 产生作用中扮演重要角色,其中的两个赖氨酸残基——Ly813和Lys96,以及三 个精氨酸残基一Argl4、Arg21和Arg73对溶菌酶的甜味产生起重要作用。
嗦吗甜为天然蛋由质结构,安全可靠;甜度大,甜味爽口,没有任何不良后 味或苦涩味;溶解性好,性质稳定,又具有很好的风味增强特性。所有这些决定 了它能在食品、饮料和医药等工业上得到广泛的应用。它唯一的缺点就是甜味来 得慢,甜味持续时间过长,这可通过化学改性或混合使用的办法来加以克服。总 之,嗦吗甜以其优良的性质引起了许多国家的极大兴趣,在20世纪80年代与两 种人工甜味剂(阿斯巴甜和安赛蜜)一起发展达到了顶峰,是国际甜味剂市场 一种很觅要的产品。
用时会发生明显的协同增效作用,但它与@
(五)剩余保护基团的脱除作用该反应是典型的酯交换反应,通常需在酸或碱的催化下进行,常用的催化剂 有硫酸、对甲苯磺酸、醇钠、氢氧化钠(钾)等。碱性条件下反应较完全,碱 催化脱酰基的机理如图3 -26所示。RC2H, R=庶糖基闭 R-= -CH,图3-26碱催化脱酰苺的反应机制
不同的Candida utilis菌株电脉冲转化的效率有较大不同。将Bgl D酶切后的 PCLRE2通过电穿孔转化至ATCC9256和ATCC9226,都能得到CYH抗性菌落, 多拷贝载体DNA也串联整合至rDNA区,但转化率都不到ATCC9950的10%。 整合至ATCC9256的pCLRE2拷贝数为6~8,整合至ATCC9226的拷贝数为 5-9,整合至ATCC9950的拷贝数为10?12。
1.糖分子及其衍生物的多点结合模型D-果糖属于E,、E2、E3、E4型甜味剂,见图丨-20。而D-葡萄糖属于 B,、B2、AH,、AH2、XH_、XH2 型甜味剂,见图 1 -20 和图 1 -21。