盐源县甜菊糖苷
(二)嗦吗甜与食品、饮料中某些成分的相互反应
甜菊苷可作为下列产品的风味增强剂:①甜菊苷和甜菊双糖A苷可用于冰淇淋和软饮料;②甜菊苷用来增残三氣蔗糖、阿斯巴甜和甜蜜素的甜味;③甜菊醉糖苷及其盐类可用于水果、蔬菜的催熟;④甜菊苷添加于食品、饮料或医药品上作芳香风味增译剂;⑤甜菊苷添加于低精度的大米中;⑥甜菊苷用于食品的无盐贮藏;⑦甜菊苷用于掩盖脂肪酸苷和脂肪酸酯的苦味,甜菊苷与乳糖、麦芽糖浆、 果糖、山梨糖醉、麦芽糖酵及乳酮糖等一起用于制造硬糖。
之后,Oertly等人根据Cohn提出的“生味基团”(sapophoric groups)这一 概念,认为可用有味官能团“助甜团”(auxoglucs)和“生甜团”(glueophores) 来对甜味进行很好的解释。他们认为这种助甜团与生甜团类似于有色物质的助色 团和发色团,并列举了这两种官能团的各种组合形式,同时还假定仟何没有同时 具备“助甜団”与“生甜团”的物质就不具备甜味。但是,Oertly并没有进一步 解释人工甜味剂(如糖精)或蛋白质甜味剂的甜味情况,也没考虑这两种官能 团在单一分子中可能的作用方式。Oertly的冇味官能团假说还是没有超越甜味剂 的分子结构特征。那种认为可根据分子结构推知其甜度的假说在20世纪初并没 被人们所接受。
1980年以后世界上有很多专利描述了甜菊苷可通过与其他一些物质 (包括甜物质)混合配制出许多供工业化生产或家庭使用的新型复合甜味 剂。这些复合甜味剂包括:甜菊苷与蔗糖的混合物;甜菊苷与葡萄糖的混合 物;甜菊苻或甜叶菊提取物与木糖的混合物;甜菊苷与蔗糖粉混合制成的一 种颗粒状产品(再加一些糖或糖密还可以浇注制模水溶性甜菊提取物与 氢化淀粉水解物在表面活性剂蔗糖脂肪酸酯作用下混合后经喷雾干燥而成的 制品;甜菊苷分散于熔融的氢化油后经冷却固化、破碎后分散于蛋白溶液中 凝结而成的制品;甜菊苷外包蔗糖的甜味剂;甜叶菊提取物和/或a-葡糖 基甜菊苷与异麦芽酮糖的混合物;浸溃于单糖、双糖和糖醉的甜菊提取物经 模制干燥而成的产品;甜菊苷与山梨糖醇、乳酸或乳酸钠的混合物;甜菊苷 在麦芽三糖聚合物水溶液中与天然甜味剂混合而成的一种膜状甜味剂;甜菊 苷与糊状麦芽糖醇的混合物;甜菊苷与甘草酸和氣化钾的混合物;甜菊苷与 乳酸钙、酒石酸钠、氣化钾或氯化钠的混合物;甜菊苷与蔗糖、麦芽糖醉混 合而成的一种低能世甜味剂(其甜度近似蔗糖);甜菊苷与阿斯巴甜混合而 成的一种对酸稳定的甜味剂;在水溶液中甜菊苷与葡萄糖混合而转变为甜菊 醉糖苷与果糖的混合物等。
将含嗦吗甜!、A、B基因的质粒(图5 -3)转移至酵母菌株AH22和 BB25-ld,对照质粒中除没有PGK启动子和嗦吗甜基因外,其余都相同。细胞 在选择性培养基上培养后,进行分离提纯。
一般成年人的味莆数约有9000个,而婴儿的味蕾 数可能要超过1万个。人的味受体即位于舌表面 味莆尖端的小孔道内,由手指形的微绒毛 (O^ji.mxZOpLm)组成D味细胞的其余表面全为 扁平而不与外界通透的沟状细胞包裹,故受体的 微绒毛只有通过味莆尖端小孔道才能与口中唾液 接触。因此味刺激分子必须具有一定的水溶性,才能随唾液流入味莆孔穴中,吸附于受体膜表面 上而产生味感。
大约与此同时,意大利的研究者描述了对阿斯巴甜蛋氨酸二肽化合物构象优 先性的研究结果,认为丨^口^是其优先存在的构象。Lelj等人依据阿斯巴甜的 FiDn构象优先性,提出一个具有普遍意义的甜受体结合模型,这其中有改进的 地方是将AH-B部分翻转了 180%这个模型能合理解释阿斯巴甜的D,D和L, D非对映体为何具有苦味。在任何情况下,每一种甜味化合物都能从Shallenberger 阻碍层的对面去接近甜受体,假定这个阻碍层是完全打开的。
第二节甜菊双糖苷甜菊苷带有较明显的苦涩味及薄荷醇味,甜味特性不太完美。甜菊双糖A 苷的甜度大约是蔗糖的450倍,甜味特性比甜菊苷更接近于蔗糖。含有甜菊双糖 A苷的甜叶菊粗提取物也因此比纯净的甜菊苷更甜、风味更好。虽然甜菊双糖苷 仍带有轻微的苦涩味,但比甜菊苷要弱多了。甜菊双糖苷~在食品和饮料中的 用量很少,因此它带有的微弱苦涩味对其影响不大。由于甜菊双糖苷的甜味特性 好、甜度大,世界上已有数个国家和地区,特别是日本、以色列和美国都在努力 实现商业化生产。
TGS -6 -a与乙酸酐吡啶溶液充分反应得到TGSPA,此全酯化反应不涉及选 择性保护的问题,因此反应条件相对于蔗糖C-6位的单酯化来说要宽松得多而容 易进行。然后,通过乙酸乙酯或甲苯等有机溶剂将TGSPA从含水的体系中提取出 来,再经浓缩、结晶,最后脱除5个乙酰基,即可得到较纯的三氣蔗糖终产物。