南海区纽甜
图2 -45 17mg/L纽甜和525mg/L阿斯巴甜水溶液的瞬时甜味分布(2)滞后时间、,即强度达到超过基线水平所需的时间(s):阿斯巴甜 1.3,纽甜 1.5。(3)达到最大钱度所需的时间(s):阿斯巴甜丨2.3,纽甜丨6.6。(4)最大强度持续时间(s):阿斯巴甜6.1,纽甜2. 8(5)结束时间即强度回到基线水平所需的时间(0:阿斯巴甜80.5, 纽甜94. 8 o(6)曲线下总面积(以强度单位x时间表示):阿斯巴甜425,纽 甜49丨。.
蔗糖(:-6位羟基的乙酰化保护反应可看作是乙酸酐的醇解反应,吡啶是此 类反应最常用的催化剂。吡啶催化的乙酸酐醇解反应是亲核类型的,其中包含2 个连续的四面体机理。反应速率与蔗糖和乙酸酐二者的浓度呈正比。增加蔗糖的 用量有利于反应向正方向进行,同时也有利于蔗糖单酯化产物的形成。相反,尽 管增加乙酸酐的用最也有利于正向反应的进行,怛过萤的乙酸酐势必造成不受欢 迎的蔗糖多酯化产物处于优势地位。
为了提髙中性或碱性条件下嗦吗甜的稳定性,人们进行了很多研究。1981 年美国一篇专利报迫f嗦吗甜与明胶溶液(预先用食用酸调至pH2. 7)混合能 明显提商其稳定性。这种混合物即使将沸水冲入,冷却后其甜度仍保持不变。 1979年日本一?篇专利描述了使山明胶、食用酸与氨基酸等物质来提高嗦吗甜产 品的质摄。
图2 -93带有芳香箪闭取代基二肽甜味剂的L-型构象图
表2 -47 L-冬氨酜-D-丙氨醉酯及-D -丝氨酵酯化合物的结构与甜表2 -48对Searie公司的D -丙氨酸丙酯和两种相关的Ariyoshi化合物作了 比较,它们的“下面”基团大小相似。往D-丙氨酸酯中引入次甲基会使甜度 下降为原来的1/10,但在引入次甲基的同时反转酯基团的构象,则甜度仅下降 50%。这可能是由于构象的变化而引起甜度差异。
图3-12三氣蔗糖与蔗糖在甜味特性方面的比较 三氯葳糖:0.0098% 座糖:5.0%
(7)贫肽酶(Aminopeptidase) 也曾用来合成阿斯巴甜。
这样,当以为AHS/BS对时,在甜味蛋白受体和三諷蔗糖之间 的两个分子间氢键AH, ( NH;)……Bs (2-0)和B, ( C0NH2)……AHS (3,-0H)显示出合适的距离和正确的键角,分别为(0.29 ±0.01) nm, ( 180 ± 16)。和(0.28 ±0.01) nm, (160 ±20)。,如图 3-53 所示图3-53 =氣蔗糖和甜受体模沏间的相互作用(以:T-0H/2-0为AHS/BS对)
Rubusoside还带有明显的苦后味。有人利用巨大芽孢杆菌 (BacUlus megaterium)产生的环糊精葡萄糖基转移酶对 Rubusoside进行改性处理,得到数种同型物的甜度更高,