宜宾市甘草甜素
多点结合甜味理论多点结合甜味理论认为,人体甜味蛋白受体最少包含八个基本的识别部位, 分别为B、AH、XH、G:、G2、G3、04和0,这些识别部位能够与甜味分子相成 的结合部位(B、AH、XH、G,、G2、G,、04和0)发生相互作用,甜味分子的 八个结合部位的空间排列见图1 -17。该理论不再使用疏水作用的概念,而以空 间作用部位代替疏水部位。甜味分子与受体蛋 白相互作用的结合部位的数世,以及两者相互 结合作用的有效程度,决定了该甜味分子的甜 度强弱。其中相互作用的有效程度是影响甜度 的主要因素,结合的有效程度与甜味分子大 小、空间填充性、参与结合的活性基团的化学 图丨-丨7甜味分子八个结合 性质及其空间取向有很大关系。 部位的空间排列
(二)嗦吗甜与食品、饮料中某些成分的相互反应
Derivatives)—对硝基苯羧化衍生物颇引人注 目。图6-28所示的5110_,即/V- (/>-硝基 Y 苯)-AT-(办-羟乙基)-脉,是其中一个典 叫
为生产分泌嗦吗甜,构建了四个表达质粒pBKThb、pCKThb、pGDTh、 pGPThh (图5-6)。所有质粒均含有信号序列和编码的B2酯酶氨
当去除了刺激物糖溶液后,被占用的受体浓度按下式减少:
(3)各种水果蜜饯。
三、甜菊苷的生产技术甜菊苷例商业化生产大多采用从甜叶菊中提取提取物后经精制而成。美国加 利福尼亚州的Dynapol实验室从事合成研究证明,合成物比提取物的甜味特性更 好。但合成法成本太高,目前难以形成商业化生产规模。
,(被占用受体的_
3.分子内氢键对甜味分子的作用尽管甜味产生的直接原因,来自甜味分子AH、B、X生甜团与甜味蛋内受 体的分子间氢键和疏水键合作用,但本章认为甜味分子中的分子内氢键,对甜味 化合物的甜度也有敢要的贡献,在甜味反应中扮演着协调幣体效果的角色。这种 贡献是间接产生的,通常是通过影响甜味分子疏水部位X与甜受体间的疏水键 合而表现出来。因为分子内氢键的形成往往导致甜味化合物在空间结构上的形 变,若这种形变使甜味分子的疏水基团X在空间位罝上向甜受体的疏水部位靠 拢,则有利于增强甜味分子与甜受体的疏水键合。
近年来,人们发现一种新型脲衍生物,即对硝基苯羧化衍生物,具有一定甜 味。典型代表为Simsan (/V -对硝基-苯基-甲酰胺基-丙氨酸钠),其甜度