新平县索马甜
1998年12月,关于批准纽甜作为食品甜味剂的申请向美国食品与药物管理 局(FDA)提交,并于2002年得到美国FDA批准,随后中国等世界很多国家也 已经批准使用。纽甜代表着当今强力甜味剂研究的最高成就,前景广阔。
(-)阿斯巴甜早期的同型物阿斯巴甜自发现之日起,经历了一条长达丨5年溲长而曲折的道路,直到 1981年才被美国FDA正式批准使用。继美国之后,世界上共有90多个国家和地 区先后批准使用,阿斯巴甜终于得到人们的承认。
(-)三氣蔗糖的甜味特性
(-)高甜度二肽同型物Searle公司最早的文献发表一年内,所发现的全部二肽甜味剂,其甜度均小 于阿斯巴甜甜度的两倍。最先发现的髙效二肽甜味剂,是L-天冬氨酰-D,L- 氨基丙二酸二酯。表2-49所示为反映“下面”酯基团重要结构特征的例子。 经适度取代的刚性基团(Rigidgroup)可得到最大的甜度,例如[70]环己基在 C-2位上的甲基化[71]能使化合物甜度大为增强,但在C-3或C-4位上的 取代[72]和[73],并没有这种效果,这显然是由于受体在立体空间中不能很 好地接受这些位置上的取代基。刚性二环葑基酯中与酯氧原子的/? _原子经充分 取代所得化合物[74],其甜度很大。系统比较四种可能的葑醉衍生物[74] ~ [77],可知它们的甜度范围高达1000 ~5_倍。
蔗糖(:-6位羟基的乙酰化保护反应可看作是乙酸酐的醇解反应,吡啶是此 类反应最常用的催化剂。吡啶催化的乙酸酐醇解反应是亲核类型的,其中包含2 个连续的四面体机理。反应速率与蔗糖和乙酸酐二者的浓度呈正比。增加蔗糖的 用量有利于反应向正方向进行,同时也有利于蔗糖单酯化产物的形成。相反,尽 管增加乙酸酐的用最也有利于正向反应的进行,怛过萤的乙酸酐势必造成不受欢 迎的蔗糖多酯化产物处于优势地位。
三、Neoculin的化学结构与晶体结构
1.生甜团的分子识别早先在考虑Kier-Shallenbei?模型的尺寸范围和蔗糖的分子结构后,人们认 为蔗糖分子内有两种可能的三角形生甜团系统:即厂-OH (AH)、2-0 (B)、 4-H (X)和 3,-OH (AH)、2-0 (B)、4-H (X),它们均是以顺时针方向排列的。怛这种安排 只能证明丨? - OH/2 - 0和3# - 0H/2 - 0在充当蔗 糖生甜闭中AH、B基本单元上的正确性,却不能 说明为什么蔗糖C-l'、C-4'、C-6,位上的羟基 被氣原子取代后均能使甜度显著增加。
二、脲衍生物