互助县麦芽糖
①这些分子能将自己分fle?好,分子中有的部位具有甜味,有的部位具有 苦味。
用C1取代蔗糖分子中5个仲位羟基中的1个羟基和3个伯位羟基的2个羟 基,如图3-13所示,其整个制备过程包括:
最初分离出马槟榔I和II两种组分,Liu等人进一步分离纯化,发现它有5 种同工蛋白,分别为马槟榔I、1-1、n、10和IV,原来所指的马槟榔1包括 了马槟榔丨、丨-1、in和iv。其中马槟榔n的热稳定性最高,人们对它的研究 也最多,在80T至少可保持48h甜味不被破坏,而其他同系物在80*C保持0.5h, 甜味即丧失,因而马槟榔U具有较高的开发价值。马槟榔的热稳定性(及由此 决定的甜味特性)与其他甜蛋白有较大不同,与某个氨基酸组成有关。如有研 究认为不同马槟榔类似物热稳定性的差别是由于B链47位上是精氨酸(热稳定 型)还是谷氨酸(热不稳定型)。
甜菊苷与乳酸、淀粉或葡萄糖混合可降低甜菊苷产品的吸湿性。据说往浓缩 蔗糖或葡萄糖溶液中添加甜菊苷可加速其结晶过程。有些填充剂除了可作风味掩 盖剂或控制甜菊苷的湿润性外,还可使其用于工业化操作,这类物质有淀粉和蔗
糖苷(以前称“糖甙”),是糖分子半缩醛羟基与醇化合物发生反应失去一 个水分子,生成的具有缩醛结构的衍生物,它具有原来糖分子的环形结构,但在 特殊情况下也可生成具有开链结构的缩醛。糖苷分子中的非糖部分称为配基 (aglycone),配基的原化合物称为配糖体。W配基的不同,有烷基糖苷、芳番基 糖苷、双萜糖苷及三萜糖苷等。根据糖分子的不同,又有葡萄糖苷、鼠李糖苷 等。广泛存在于各种动植物体内的天然糖苷种类繁多,一般都具有复杂的配基。 植物的叶、皮和种子中存在数玲众多的糖苷,它们对植物的生长有重要的作用。
这样,生甜团中的AH、B就不仅仅局限在氢供体和氢受体范围,而是扩展 到所有能接受未共用电子对的电子受体和所有能给出未共用电子对的电子供体都 可以作为生甜团中的氢供体和氢受体,从而使甜味三角理论中AH、B基团的适 用范围大大拓宽。所以,在三乙酸或三硝酸甘油酯中,酮基上的C原子和硝基 中的N原子就可以以Lewis酸的形式通过接受未共用电子对而分别充当两个甜味 分子生甜团中的A。
3.提髙S-6-a的得率
纽甜在用萤范围内对溶液的黏度(在5g/L浓度下小于5mPa?S)、表面张力 (在0.015g/L浓度下约为65mN/m,5g/L浓度下约为38mN/m)和pH (在 0.158/1^的浓度下为7.01,lg/L浓度下为5.8)的影响可忽略不计。它极小的黏 度不会对混合产生任何影响,它对水溶液表面张力和pH的影响可忽略不计,如 在碳酸饮料中不会引起过分起泡的现象。
有一篇H本专利描述了结合使用酸的钾、钠盐与氨基酸能缩短味觉持续时 间,但该专利不是针对T.donie/Zi〖提取物,而是指姜货属植物。
通过给白鼠静脉注射甘草甜素和甘草亭酸,60min后它们主要集中在血浆和血 液中,浓度最髙。甘草甜素在其他组织(如肺、心脏、胃、小肠)中的数最很少, 而在大脑中根本没有。甘草亭酸在其他组织(包括脑)中的含量也极少。静脉注 射甘草甜素24h后,在胆汁中的累积可达88.5%,静脉中仅占4.83%。如果是甘