兴海县阿斯巴甜
由于化学水解缺乏专一性,因此对6-糖苷键的水解需要在特定酶的 作用下才能完成。
很难说这是否是真正的第五个活性位点,或者这只是一个在不影响受体粮体 反应的情况下难以被扰动的临界区域。其他C族受体的数据表明,所有代谢型 受体的半胱氨酸贫集区域具有主要的结构作用。至于人体Ca2?受体,Hu等人发 现,hCaR的半胱氨酸富集区域在Venus flytrap结构域至hCaR的7TM的信号传 递和信息传递的序列特异性中起着关键作用。所有在这区域的突变都可能破坏甜 味受体的结构整体性。另一方面,楔形机制确实在无需提及这一另外结合部位的 情况下,为T1R3在与甜味蛋白相互作用中所起的关键作用提供了一个简明的 解释。
自然界中潜在的可作为高效甜味剂的天然糖苷除前述4类之外,本节对其余 6类略作介绍。这其中,甘茶甜素本身并不属于糖苷类化合物,但它在植物体内 是以糖苷形式存在,经酶水解糖苷而制得。除此之外,本节最后还顺便介绍一下 存在于天然植物体内的倍半萜烯化合物(HermmdulcifO,其甜度很髙,但不是 糖苻类物质。
图3-37各种有机溶剂对TCR转化成三氣蔗糖的影响 Christopher Bennett等人齊对从从vinacea和思曲潘(A. niger )中获得的 ?-半乳糖苷酶,进行提高水解反应速度的试验,包括使用表面活性剂、增加离 子强度和提髙反应温度等。前两种方法均不成功,但发现当pH为5.0?5. 5、反 应温度为551时,酶的失活和反应速率处于最佳平衡状态。此时,歸.vinacea 中获得的a-半乳糖苷酶,对TCR水解反应的& =5.8mmol/L,最高速率
目前,研究人员已完成了对马槟榔n的初级晶体学分析,而对马槟榔n结构 测定工作仍在进行当中。研究表明,马槟榔n由两条多肽链(a链和b链)非 共价紧密地连接在一起,各链氨基酸数目分别是33、72,甜度是等质量蔗糖的 100倍。A链的大多数氨基酸为疏水性氨基酸,B链中也含有很多疏水氨基酸。 两条链中Glu和/或Gin和Arg数量较多,且两条链均不含Ser、Thr、Tyr、Met 和Lys。马槟榔II含有8个半胱氨酸,但没有发现游离巯基,因此马槟榔II虽分 子相对较小,但可能形成了4个二硫键,其高度的热稳定性可能归因于此。比较 发现马槟榔II和嗦吗甜I、莫奈林、Curculin和奇异果素的氨基酸序列没有明显 的相似性,但它和arabidopsis thaliama 2S种子储藏蛋白,尤其是2S A蛋白AT2S 间的序列有很髙的相似性,而后者没有甜味。2S白蛋白AT2S3和A链4 ~20位 氨基酸中70. 6%匹配,和B链7 ~69位氨基酸有52.4%匹配,并且这两种蛋白 的8个半腕氣酸的位置相同。不同植物如/4. fAa/iana、Brassica napus s Ricinus communis和Bert— excelsa的2S白蛋白的序列髙度相似,因此可以认为马槟 榔II是具有甜味的2S白蛋白。的2S白蛋白的小亚基(A链)的某 些序列和嗦吗甜相似,但2S白蛋白的这部分序列与马槟榔n没有相似性。
通过美国国家肿瘤研究所公开发表的,关于美国国内脑肿瘤发病率的有关教 据资料,以及所进行的检索分析,并不能证明阿斯巴甜的使用与脑肿瘤发病率的 增加之间有任何关系。上述教据资料表明,美国国内脑部和中枢神经系统的肿瘤 发病率,自1973年开始增加,并一直持续增加至1985年;自丨985年起,这条 一直处于上升的曲线,开始呈现出平稳的趋势;而近2年的记录(1991 ~ 1993),则表现这种趋势已开始逐渐降低。
如表2-58所示,用D, L-氨基丙二酸(Araa)取代L-天冬氨酸是改变 /V -端氨基酸而又能保留甜味的第一个例子。Ama分子中氨基与竣基的关系与 通常氣基酸的一样,符合Shallenberger和Acree的AH 一 B理论。用D,L - Ama 取代天冬氨酰苯丙氨酸甲酯分子中的L-天冬氨酸制得的二肽衍生物[126],其 甜度是蔗糖的300 ~400倍,也有人报道是“200倍”或“相甜”。Ariyoshi指出 甜味非对映体可能是D-Ama-L-Phe-OMe,而不是L,L-非对映体。由于手 性中心取代基次序优先性的变ift, D-Ama的绝对构型与L-Asp是一致的。后 来,应用类似的方法制备出D,L-Ama-D-丙氨基酯。D,L-Ama-异丙基
增加C-f取代基的大小对甜味的增强有积极作用,取代原子半径越大,甜 度越强。4,-碘-4,r, 6^-三氣蔗糖衍生物比蔗糖甜3500倍,而4,丨',4#, 6,-四溴蔗糖衍生物的甜度是蔗糖的2200倍,C -4'取代基从氣原子到溴原子, 随着原子半径增加,甜味大约增加50%。
兴海县阿斯巴甜
展开阅读全文