闽清县蔗糖素
Hodge等人在大U形口袋区发现5种糖苷,即甘草甜素、柚背二氢査尔酮、 甜菊苷、新橙皮苷二氢查尔酮和Osladin等。它们含有多个AH、B单元,呈U 形三级结构,U字中部为疏水骨架,如图1-25所示。其抑制剂Gymnema具有 相同的骨架,但其上的6个一OH全被酯化,这表明甜受体也有与此互补的 穴位。甜分子中疏水侧链的长度与甜度有关,侧链的空间要求取决于其结合的 部位,故各甜味化合物的侧链长度限度也可作为研究受体的有利探针。应指 出的是最强刺激是针对脂膜的烃链C~9前段,故有刚性(:9疏水链的化合物 最甜。
对于甘草甜素对牙斑形成的影响,也在人身上做了试验。试验对象由21个 医学院学生组成(男女比例大约是1:3)。试验第一天早晨让试验者刷净牙齿, 并用赤藓红检杳,以确认所有牙齿表面均无牙斑。所有受试者需参加为期3天的 第一期观察,另有5人继续参加第4天以后的进一步观察。供试验用的是甘草凝 胶,即溶于0.01/m>//L乙酸盐缓冲液中的2%甘草甜素。对照组用的是
(二)安赛蜜的代谢情况
(3)和(4)的两个芳香环越离越远。对比它们各自相对于蔗糖的甜度不难发 现,苯环间的相互作用越强,或者说距离越靠近,其二肽甜味剂的甜度就越高。 另外,芳香环上略微的不同将通过影响整个二肽化合物的构象从而影响它们的 甜度。
4.评价潜在神经毒性和免疫毒性的毒理学试验
植物嗦吗甜甜味持续时间长,这对嗦吗甜的某些应用(如口香糖、牙裔等) 有益,但对大多数产品而言是不希望有的,其使用范围W此受到了限制。通过生 物技术改变嗦吗甜的氨基酸序列,得到的变种有望既保持植物蛋白质的甜味,又 缩短甜味持续时间。
因此,甜味的蛋白质受体对甜味分子,尤其是含有强疏水性取代基团的甜味 分子,具有空间结构的要求。这种要求是由蛋白质受体的空间结构所决定的,例 如甜味分子AH、B、X生甜团的构象必须呈顺时针排布可能就是这种空间结构 的要求之一。而实际的空间要求要比这复杂得多,也丰富得多。可惜的是,作为 甜味受体的蛋白质分子至今仍未被成功分离出来,因此这个设想只能等到甜味受 体蛋白质分子的结构被弄清楚后才能得以最终证实。
蔗糖那种独特而又特別令人满意的甜味,似乎不能用葡萄糖和果糖基之间简 单组合来说明,这两个糖基可能在固定倾斜角度方向上形成分子内氢键。当用氣取 代羟基时,发现它的甜度增加了数百倍,这明显是由于几种不同类型氢键复杂的相 互作用的结果。吡喃葡萄糖基的c-2羟基起AH作用,而B则是呋喃果糖基 c-r的氣取代基团。甜度大幅度增加的原因,在于以椅式构象为主的吡喃葡糖 残基C-4轴向取代基充当了亲油性基闭[图1-15 (1)],另一方式是把C-4 位置上的连接基团对换在呋喃果糖残基的C-f位置上C [图1-15 (2> ],这 就解释了 1',6’ - 二氣和4, lf,6,-三氣衍生物甜度增加的原因。4,6'-三氣-4,1',6'-三脱氧半乳蔗糖(即三氣蔗糖,SUCral08e)的情况也是这 样,因其两个生甜闭的相互增效作用,明显强化了该化合物的甜度增大效果。它 是此系列化合物中最甜的一种。在这两种情况中,分子模型表明AH、B、X系 统十分接近于Kier三角形的相互间距。
4-PAS在系统中的浓度也会影响得率,浓度过低,反应速率变慢,反应时间延 长;浓度过高,加速其他一些副反应,影响到产物的质量。图3-19所示为含 15% ~35%4-PAS甲基异丁基酮溶液的反应情况,其中乙酸浓度为8%,反碎 时间3h,显示浓度25%为佳(得率75% )。
当去除了刺激物糖溶液后,被占用的受体浓度按下式减少: