信丰县甜菊糖苷
表石-^所示为在丨⑷^,不同pH水溶液中安赛蜜的半衰期值,这些数据证 明稳定性比通常加工时滞要的稳定性要髙得多。因此,可以用巴氏和常规方法对 安赛蜜溶液消毒。pH4的安赛蜜水溶液在120T放罝lh,没有检出任何分解产 物,完全与半衰期数依相符。
(1)奇舁果岽的单体(缩水甘油链由棍形阁表示,办-链山典色表示)
(二)苯酐法
在固体粉末饮料和什锦点心之类十燥产品中,阿斯巴甜的稳定性很好,整体 稳定性类似于纯阿斯巴甜。卨温环境中阿斯巴甜会发生水解和环化作用,这就限 制了它在焙烤、油炸类脔高温长时处理食品中的应用。但若处理得当,阿斯巴甜 也可用在那些需某种程度热处理的食品中,如可应用在需经高温短时杀菌的食品 中(132~138T,linin〉。在其他极限条件下,如冰冻或速冻食品中,直接变化 的阿斯巴甜数苗:很少。
发现比较晚的Brazzein由于具有耐热性,而且甜味高,因而有望大规模生 产。美国Kelcakr Worldwide公司已经可以利用含有Brazzein基因的玉米生产 Brazzein,据称丨I重组玉米中可以提取1 kg的Brazzein,但迄今为止还没有这方面 的确切报道。
根据图3-31可知,低温长时间反应有利于S-6-a的形成。但当反应时间 大于6h时,“相对S-6-a值”增长缓慢,继续延长时间对反应对提髙S-6-a 得率并无明显效果,因此选择6h为最佳反应时间。
Qli.NUSDjNHjCjH,, + NaOIl~?QHnNHSOjNa+ QH..NHJ + H20 此法最早于1942年由美国Audrey和Sveda合成,此后又多次改进,生产工 艺比较成熟,我国部分厂家也采用此法生产。可以以三氣乙烯为溶剂,反应后经 分离、浓缩、萃取得到95%的甜蜜素。
图3-16脱三笨卬基的反应式 注:三笨基氯甲烷极易水解为=笨基平醉、
1.生甜闭的分子识别早期对三氯蔗糖高甜度的解释,曾涉及厂-Cl作为生甜团AHS (下标S是 指甜味分子,下同),Bs、Xs三角形生甜团的质子接受部位,即充当化基团的角 色。这种假设可以解释(:11(:!3的甜味,其中一个氣和另一个氣分别作为1和乂5, 而缺电子的H作为AHS。但由于CHC13不是很甜,C1取代基的质子接受能力因 此被认为很弱(相对于0取代基而言)。实际上,红外光谱研究证实了 C1原子 的质子接受能力只有0原子的6% ~22%。这样,在0H和C1同时存在于分子中 时(如三氣蔗糖及其衍生物),C1取代基几乎不参与与甜味蛋白受体形成氢键。 因此,F氣蔗糖及其衍生物的AH、B部位只能是母体上的ft由羟基。
在第三种机理中,刺激物分子不可逆地进入接近离子载体的“有序排列队” (orderly queue),这条排列队的物理长度决定了持久性。三种机理中前部分离子 载体阶段与第二种机理相同。