崇左市阿力甜
后来,研究人员成功地证明了异型二聚体T1R2-T1R3为真实的甜味受体, 这为今后建立更为真实可靠的同源模型敞开了大门。
Winnig等对识别lacUsole的分子基础进行了更为深入的完善。通过对特定受 体突变体的功能分析,他们发现小鼠WR3的第五个TM呎域的突变V738A足以 使小鼠甜味受体获得lactisole敏感件,尽管这一受体突变体的敏感性要比人体甜 味受体的低。另外,通过小鼠T1R3的突变K735F,可得到一个与人体受体具有 相同丨actisole敏感性的小鼠甜味受体。所有以前的资料均表明,甜味受体的 T1R3原体的TM K域中有真正的第四个部位。图1 -34描述了受体T1R2-T1R3 上的四个结合部位。
味受体表达细胞的活化是对甜味物质的行为吸引的首要决定W素。
莫奈林分子的四级结构与其功能紧密相关。研究发现,莫奈林完整的天然构 象是其甜味产生的必要条件,而单独的A链或B链均没有甜味;同时,天然的 莫奈林分子具有一定的抗蛋白酶的消化能力,但经长时间、过量酶消化后的片段 也不具有甜味。目前,研究人员已经搞清楚的是,甜蛋A中游离的竣基是以离子 键的形式与甜味受体结合从而引发甜味。
Homandberg等人以1,4-丁二醉为有机助溶剂,用《-胰凝乳蛋白酶催化 Z-Trp和GlyNH2合成Z-TrpGlyNH2 (Z =苄基)进行试验,证实上式成立,且 结果还表明水活度的增加对增加平衡常数的作用可以忽略不计。3.水、有机溶剂二相体系法
表S-20 仙茅蛋白的氨基酸序列‘
(三)由G-6-a酶法合成S-6-a
①全基团保护法;
这是英囯Tate & Lyle公司提出的新方法,首先利用芽孢杆菌属的菌株在 30弋下发酵Glc,生成葡萄糖G-6-a (葡萄糖-6-乙酰酯),采用甲醉抽提及 硅胶柱层析分离相结合的方法提纯,然后G-6-a与蔗糖的混合物,在由巨大 芽孢杆菌产生的果糖基转移酶的作用下,生成S-6-a,采用色谱分离的方 法,可分离出70%纯度的S-6-a。将之与Vilsmeier试剂反应对4、厂、6'三个 羟基进行选择性氣化后,再经脱乙酸基反应即得到终产物三氣蔗糖C
糖苷一般不具备甜味,多少还带点苦味。具有较髙甜味的糖苷在自然界中数 虽不多,可作为甜味剂资源加以开发的种类就更少了。本章将要讨论的糖苷化合 物都具有较大的实用价值或应用前景,其中有些已实现商业化生产并进入实用阶 段,有的则是天然糖苷的化学改性产品。