连南县甜菊糖苷

微信扫一扫,分享到朋友圈

连南县甜菊糖苷

连南县甜菊糖苷
C-6位羟基的单基团保护是本制备法的核心步骤,要求所形成的中间产物 对氣化试剂稳定,而又易于脱除。其中,最适用的方法是酯类保护法,因为它兼 具引入方便、在所需反应条件下稳定以及易于除去等优点。通常选择羧酸的活泼 衍生物作为酯化试剂,其中最常用的是酰基酐或酰基卤。对蔗糖来说,形成乙酸 酯或其他羧酸酯娃最有效的保护醉羟基方法,这可以使它在随后的酸性条件中不 受影响。
之后,Oertly等人根据Cohn提出的“生味基团”(sapophoric groups)这一 概念,认为可用有味官能团“助甜团”(auxoglucs)和“生甜团”(glueophores) 来对甜味进行很好的解释。他们认为这种助甜团与生甜团类似于有色物质的助色 团和发色团,并列举了这两种官能团的各种组合形式,同时还假定仟何没有同时 具备“助甜団”与“生甜团”的物质就不具备甜味。但是,Oertly并没有进一步 解释人工甜味剂(如糖精)或蛋白质甜味剂的甜味情况,也没考虑这两种官能 团在单一分子中可能的作用方式。Oertly的冇味官能团假说还是没有超越甜味剂 的分子结构特征。那种认为可根据分子结构推知其甜度的假说在20世纪初并没 被人们所接受。
/ /
蔗糖溶液来说的=氣蔗糖的相对甜度。它的相对甜度随pH的上升而下降,特別 在低甜度悄况下尤为如此。在典型应用范围内当甜度较高时,pH对甜度的影响 减小,而陚形剂及其他可能存在的食品成分对甜度的影响增大。
化学法合成阿斯巴甜,一般包括以下5个步骤:
在第二种机理中,糖分子首先与细胞黏膜的非专一性部位发生可逆性结合, 引起代表持久性的刺激物浓度的集中。当糖分子从非专一性部位脱落后可到达由 之刺激而打开的离子载体那儿去,这过程导致刺激物分子的释放,且关闭的离子 通道可被另一糖分子重新打开。因此,反应强度可解释为结合位的快速占有与让 出,以及与之同时发生的离子通道的快速打开与闭合。
图2 -45 17mg/L纽甜和525mg/L阿斯巴甜水溶液的瞬时甜味分布(2)滞后时间、,即强度达到超过基线水平所需的时间(s):阿斯巴甜 1.3,纽甜 1.5。(3)达到最大钱度所需的时间(s):阿斯巴甜丨2.3,纽甜丨6.6。(4)最大强度持续时间(s):阿斯巴甜6.1,纽甜2. 8(5)结束时间即强度回到基线水平所需的时间(0:阿斯巴甜80.5, 纽甜94. 8 o(6)曲线下总面积(以强度单位x时间表示):阿斯巴甜425,纽 甜49丨。.
研究者对仙茅蛋白的变味作用机理进行了探讨,认为仙茅蛋白可能与奇异果 素类似,也有两个结合点:一个与甜味接收蛋白的接收点连接,另一个靠近甜味 接收器位点的位点结合。后一个结合作用很强,因此仙茅蛋白一旦与舌头接触, 不易与接收器的膜分离。仙茅蛋白的活力位点微弱地刺激接收器膜上的甜味接受 位点,从而产生较弱的甜味。而唾液中的Ca2+和/或Mg2+抑制了仙茅蛋白对甜 味接受位点的刺激,导致甜味消失。舌头接触水使得唾液中的二价阳离子从舌头 表面去除了,W此仙茅蛋白的甜味冋复。酸引起了甜味接收器膜构型的变化,从 而导致仙茅蛋白活力部位对甜味接收位点的亲和力增强了,因此,酸引起的甜味 更强。也可能酸引起了仙茅蛋白的构型变化,从而增强了亲和力。舌头表面的酸 去除后,使仙茅蛋白的活力部位与甜味接收位点脱离,而仙茅蛋白本身不从接收 器膜脱离。
(3)]。不对称单元的四个异型二聚体中的两个亚基的相对位置几乎都是一 样的,这表明,堆积相互作用并不对Neoculin异型二聚体的总体结构起重要 影响。值得注意的是,结构中的环状区域不大,怛构象有明秘的区别,这表 明这些区域具有较髙的可变性。
表3-9 TCR和三氯蔗糖在各种溶剂中的溶解度 单位:%

展开阅读全文
本站部分文章来自网络,不代表立场及观点,转载请注明出处,如有侵权请联系即删除。 广告合作事宜,请联系:133 2802 0789(微信同号)

你也可能喜欢

评论已经被关闭。

插入图片
微信 微信
微信
电话 电话
13328020789
返回顶部