新郑市乳糖
有别于其他C族G蛋A偶联受体的是,甜味受体为异型二聚体。一些研究 人员猜测,TIRs (特别是T1R3)很有可能就是甜味受体,并且可能像其他C族 G蛋白偶联受体一样形成同型二聚体。但是,几个月后,Li等便证明了只有异型 二聚体T1H2 -T1R3才具有甜味受体的功能。T1R3的序列有20%与mGluRs的 相同。在人们发现甜味受体的时期,mGluR8是惟一一种结构已被人们至少部分 了解了的C族G蛋白偶联受体。正是人们对mGluRlN端结构的了解,促成了首 个甜味受体同源模型的建立。类似于mGhiRl,这个模型为两条T1R3链的同型 二聚体。不久后,—个类似的模型表明,T1R3的活性位点可以容纳三个甜度极 高的小分子质量分子。
然而,鉴于两代白鼠试验发现了明显的膀胱癌变,似乎没有一个国家认为可 以无限量地使用。1994年,世界食品添加剂联合专家委员会确定的糖精AD丨值 为Smg/kg。美国曾经规定,含糖精的食品必须在其标签上标明“糊精可使实验 动物致癌”以示警告,而甜赉素在美同、英国、日本等国家不允许使用。我国 政府近年加大力度严格限制糖秸的使用,并不惜?-切代价关闭一些糖楮制造厂, 有望使糖精的超量滥用现象得以控制。
1976年,美国国家癌症研究所临时委员会在报道21个有关致癌性研究情况 时声明,“现有的证据不能证明甜蜜素和它的主要代谢产物环己胺对试验动物有 致癌作用”。
阁2-24 40^€时,pH和Z-Asp-PheOMe合成平衡得书关系阁 注:①?春-、-△-、-▲-、?□?、-■?表示在不用底物浓度和a值妞合时,Z-Asp-PhrOM*?在有机相的 得牟;②-Z - Aap = PheOMe = 80mmol/L, a = 1;③-A-, Z - Asp = PheOMe = 80ramol/L, a *5;④-▲-,Z - Asp = PheOMe = 80mmol/L, a = 10;⑤-Z - Asp = 80mmol/L, PheOMe = 160mmol/L, a =10;
②甜菊苷被肠内微生物分解成甜菊醇和葡萄糖;
注广,从氨基洎开始计算。
(一)均匀反应体系
表4 -1 各种天然糖苷的甜度及其来源植物
表3-12至表3-16所示为三氣蔗糖应用在柠檬酸碳酸饮料、橙汁、薄荷口 香糖、巧克力及番茄酱中的数个实用配方,供参考选用。
由于各甜蛋白间只存在一些三肽序列相同,且它们连接抗体后就丧失了 甜味或变味特性,W此另外一些研究人员猜测一些氨基酸拉伸后参与形成能 被味觉识别器识别的结构。根据报道,仙茅蛋白分別和莫奈林、奇异果素和 嗦吗甜有2个、5个和6个相同的三肽,但免疫印迹分析结果表明,仙茅蛋 白的抗血淸只与奇异果素发生微弱的反应,而与嗦吗甜、莫奈林不发生反 应。假定这些推测的三肽是在分子表面,则它们应存在于5个完全铩露在表 面的环中:11 ~丨4、46~51、66 ~ 70, 76 -78, 106 ~ 109 0这些氨基酸序 列明显与没有甜味和变味特性的GNA不同。特别是,属于11~14、46~51 和66 ~70的氨基酸非常接近(1.50~1.60mn),能够构建一个一般的抗原 决定子(common antigenic determinant),它能使味觉接收器失效。另外,多 肽链折叠后,仙茅蛋白的AsP71和Tyi65靠近并暴寐在表面,并且形成一个 类似于阿斯巴甜的味点。