靖西市木糖
图1 - 34 T1R2 - T1R3受体的结合部位注:两个钴合非蛋A质甜味剂的不同大小的活性位点,一个位于TMD的钴合甜蜜素的部位,另一个 位于站合蛋质的外部“横形”部位
当两种或两种以上甜味剂混合时,由于发生了协同增效作用,因此混合物甜 度大于各单独成分的甜度之和。嗦吗甜可与糖精、安赛蜜和甜菊苷等发生协同增 效作用,但与甜蜜素及阿斯巴甜的增效效果并不明显。两种甜味剂的甜度相等 时,混合时所出现的协同增效作用最明显。嗦吗甜还能掩盖糖精之类甜味剂所带 有的苦味,该效果在饮料中表现得特别明显,这或许是由于糖精苦味达到最大值 时嗦吗甜的甜味仍然继续维持者的缘故。若往嗦吗甜-糖精混合物中再添加些碳 水化合物塑味觉改良剂,还可进一步缩短嗦吗甜的甜味持续时间。可添加的物质 有葡萄糖醛酸、匍萄糖、岩藻糖、木糖醇、阿拉伯搪醇、乳酮糖、葡庚糖(glu- coheptose),半乳糖和半乳糖胺等。最适合与嗦吗甜混合的是蔗糖,其次是高果 糖浆、转化糖、麦芽糖和果糖等。嗦吗甜与转化糖混合物的甜度大约是5%蔗糖 溶液甜度的115倍,它与果糖混合物的甜度大约是15%蔗糖溶液甜度的57倍。
另外,碱性乙酰基还具有一大优点,
由于各甜蛋白间只存在一些三肽序列相同,且它们连接抗体后就丧失了 甜味或变味特性,W此另外一些研究人员猜测一些氨基酸拉伸后参与形成能 被味觉识别器识别的结构。根据报道,仙茅蛋白分別和莫奈林、奇异果素和 嗦吗甜有2个、5个和6个相同的三肽,但免疫印迹分析结果表明,仙茅蛋 白的抗血淸只与奇异果素发生微弱的反应,而与嗦吗甜、莫奈林不发生反 应。假定这些推测的三肽是在分子表面,则它们应存在于5个完全铩露在表 面的环中:11 ~丨4、46~51、66 ~ 70, 76 -78, 106 ~ 109 0这些氨基酸序 列明显与没有甜味和变味特性的GNA不同。特别是,属于11~14、46~51 和66 ~70的氨基酸非常接近(1.50~1.60mn),能够构建一个一般的抗原 决定子(common antigenic determinant),它能使味觉接收器失效。另外,多 肽链折叠后,仙茅蛋白的AsP71和Tyi65靠近并暴寐在表面,并且形成一个 类似于阿斯巴甜的味点。
图I -24 Suosan甜味衍生物的多点结合模型 柬基Suosan ( Cyanosuosan)属于典型的B、AH、D型甜味剂,CN基不仅作 为氢键受体基团,也是重要的吸电子基团,它能增强脲基NH的酸性,因此氰基 Suosan的甜度是蔗糖的650倍。就像超强阿斯巴甜,如果用吸电子能力强的硫朌 子取代氧原子,增强脲基NH酸性,使甜味分子与受体蛋白的亲和力增强,所以 硫代氮基Suosan的甜度是蔗糖的2900倍。
阿斯巴甜在人体内代谢,以及在高温长时间条件下可能会分解产生极少量的 甲醉。大量事实证明,在一般的摄入最范围内,阿斯巴甜所含有的甲醇不会造成 安全性问题。如图2-32所示,以阿斯巴甜增甜达到与10%庶糖溶液同等甜度 (约含阿斯巴甜525mg/L)的饮料中,仅食有相当于56mg/L的甲醇,这一含最 大大低于普通果汁和蔬菜汁中甲醉的含量。显然,存在于大0然中生长的果汁中 的甲醇含量远远高于最大萤使用阿斯巴甜作为甜味剂的饮料中的含最。因此,美 国FDA作出结论认为:“本局认为没有必要担心由于摄入最大量的阿斯巴甜会导 致膳食中甲醇摄入量的变化。”
也就是说,异型二聚体是仙茅蛋内惟一的活性形式。尽管仙茅蛋A2可能含 有一个N -糖基化位点,但糖基化并不是Neoculin产生甜味和味道修饰作用的必 要条件。由于仙茅蛋白1和仙茅蛋白2分别含有大量的碱性、酸性残基,因此仙 茅蛋白的三个异形体分子的表面性质显著不同。尤其是活性异形体Curculin 1-2,它呈现可能对分子与所假定的甜味受体间的相互作用产生重要影响的两极 电荷分布状态。
在脉冲前,细胞经二硫苏糖醇(di丨hiothrehol,DTT)处理或在样品中加人载 体DNA都+能提高转化率。用标准醋酸锂程序(standard lithium acetate procedure) 将线性PCLRE2转化至CandUu utULs得到的转化率非常低,1网DNA的转 化体不到10个。
软饮料上也特别需要一些高品质的甜味剂,饮料对甜味剂的要求是:高质萤 的甜味特性、合适的风味与颜色、在酸性条件下稳定、经得起热处理与碳酸化处 理、能留:低。嗦吗甜除了甜味特性不甚好之外,其余的均能满足要求。在饮料 中,嗦吗甜的甜味因迟于柠檬酸和磷酸的酸味而易造成味觉的不平衡,且其甜味 持续时间长(这特性在软饮料中并不需要)。闶此,只有与其他甜味剂混合后, 嗦吗甜才能应用于饮料中。
注:反应I5hc
靖西市木糖
展开阅读全文