山东爱德万甜
研究表明,甜味受体是类似于谷氨酸受体、Ca2?敏感受体、y-氨基丁酸B 型受体和信息素受体的C族G蛋A偶联受体(GPCR)。所有这些G蛋白偶联受 体不仅都有一个7-螺旋跨膜结构域(7TM),而且还有一个含典型配体活性位 点的大胞外结构域——Venus flytrap结构域(VFTD),以及一个半胱氨酸富 集域。
酯化反应的条件取决于酯化试剂的特性,如与乙酸酐反应时受吡啶等杂环胺 的影响。试验表明,若酯化反应在催化剂催化、无水和极性非质子传递溶剂中进 行,可得到较高得率的蔗糖单酯化物。蔗糖和乙酸酐在弱碱性条件(如吡啶溶 液)下很容易反应,单酯化物的得率较高。但在含水的强碱性条件下,蔗糖和 乙酸酐反应更容易生成多酯化物。尽管蔗糖的酯化反应也可以在酸性环境中进 行,但酸性环境容易导致蔗糖的水解。
(一)嗦吗甜在食品饮料中的应用
已知TCK只有在亲水的溶剂中才能高度溶解,但在保证酶解反应能得到 必要的水的前提下,a-半乳糖苷酶却被证明在与水不互溶的有机溶剂中, 最稳定并具有最高的活力。这个矛盾,可以通过使用被含水缓冲液预饱和的 有机溶液时得以解决。研究发现,高水混溶的溶剂如二氣六环、丙酮、甲醇 和四氢呋喃等,即使使用高达30%的含水缓冲液进行预饱和,也不支持 a-半乳糖苷酶的水解反应。但在含水缓冲液预饱和的正丁醉、甲基异丁基 酮和乙酸乙酯三种溶液中,TCR的溶解度均达到50%以上。这些溶剂同时 也支持a-半乳糖苷酶的活力,只是三者对三氣蔗糖的溶解性存在很大的差 別,如表3-9所示。
至于MNEI,也已被合成且克降于带有T71ac启动子的pET -22b +的载体 中,并于大肠杆菌BL21 (DE3)中得到表达。最近,单链莫奈林基闪MNE丨已 在大肠杆菌偏爱密码子的基础上被设计出来,从而优化了基因在大肠杆菌中的表 达。这些合成莫奈林基因被克隆于含T7启动子的PET-22 b载体。SDS-PAGE 分析结果表明,重组莫奈林的产虽髙达总可溶性蛋白的45%。
总之,三肽化合物的甜度比大小相似的二肽化合物低。三肽分子之所以会损 失甜度,可能焙因为亲水性的增加以及构象的限制,使得其整体分子的形状与大 小均未处于最佳状态的缘故。Ariyoshi进一步研究了四肽和五肽化合物,在所研 究的14种四肽中有3种的甜度仅是蔗糖的0.5 ~5.0倍,7种五肽没有甜味(表 2-66)。这表明低聚肽的分子越大,接近甜受体就越困难。表2 -66 二-五肽化合物的结构与甜度
半乳糖苷酶水解TCR的速率,通常为水解棉籽糖的丨/ (50 ~ 100)。产 物抑制是一个可能的原因,因为半乳糖苷酶常常会受到半乳糖的抑制。另一 个原因可能是,由于自由的C -6位羟基对底物与酶活性部位的高效结合是必窬 的。酶活力降低的原因还可能是由于,位于糖苷键附近的f-Cl会阻碍酶的水 解作用。
自1965年底,在历经16年的风风雨雨之后,对于美国纽特公司来说,1981 年7月24日是一个很值得永远纪念的日子。这一天,FDA最终决定再次批准阿 斯巴甜的使用,并于同年丨0月22日开始生效。随后的1982年8月13日和1983 年7月8日,FDA先后两次批准扩大阿斯巴甜在食品中的应用范围。在此之后的 6年间,FDA又相继批准阿斯巴甜在很多食品中的应用。1996年,FDA又批准 阿斯巴甜在所有工业化食品中的应用。
二、糖精的生产技术