江海区高麦芽糖
3-30的曲线趋向来看,继续降温可进-?步提髙S-6-a的得率。怛从生产可操 作性和经济效益方面考虑,本研究选用-251为反应温度。
现在,人们正努力研究以期分离出能引起上述反应的专一微生物。已发现很 多细菌具有分-葡糖犴酸酶的活性,能将甘草甜素水解成甘草亭酸。只有两种细 菌可将3 -脱氧-18 -卢-甘草亭酸还原成甘草亭酸或3 -表-18 -甘草亭酸。 从人的新鲜粪便中分离出的瘤符球歯属(Riimirwcoccus)具有水解甘草甜素生成 18 -P -甘草亭酸的功能,另外可将3 -脱氢-18 -甘草亭酸还原成对映体 3-表-18-0-甘草亭酸的梭状芽孢杆菌(Clostridium)也是从人刚排出的粪便 中分离出来的。这两种细菌的混合体能将甘草亭酸异构成3 -表-18 -办-甘草 亭酸,反过来也如此。这一过程可能是通过氧化中间体3-脱氢-18-/3-甘草 亭酸而进行的。甘草甜素转化成3-表-18-分-甘草亭酸是分几步进行的,其 中的终端异构物(isomer)是几种细菌的?种产物。所有变化可概括成:甘草甜
甜密素钙盐的甜度略大于钠盐,但产生苦后味的阈值较钠盐来得低。两者的 差别可能是由于离子化的不同而引起的,因为甜刺激起始于环己基氨基磺酸根离 子,而苦味可能与未离解盐有关。甜蜜素的甜度还与环境介质冇关,在不同的产 品中有不同的甜度,如在果汁中其甜度会明显增强。因此在实际应用前,有必要 首先确定它的真实甜度。
在没有其他食品成分存在的前提下,通过品尝一种甜味剂水溶液,即可确定 该产品的甜味质量。供品尝的三氣蔗糖溶液的甜度接近8%的蔗糖液,并用柠按 酸调节溶液pH至3. 5。如图3-12所示的结果表明,三氣蔗糖的甜味质量与蔗 糖很相似,它没有糖精、甜蜜素、甜菊苷之类强力甜味剂所带有的不愉快后味。
为了跟踪安赛蜜可能的代谢途径,人们用Mc标志的安赛蜜在白鼠、狗及猪 身上,后来也在自愿受试人身上进行试验。试验结果表明,安赛蜜不参与任何代 谢作用。无论是动物还是人体均能排出此化合物,没发现它的任何代谢活动。因 它不经代谢就排出体外,因此没有任何能量作用。
阁4-3等甜度甜菊背、蔗糖及廿草甜素水溶液的甜味分布曲线 1—荊糖2_甜菊苷3—甘草甜素
图1 -3甜味化合物分子构型的变化对甜味的影响 (1) a- D-吡喃葡萄糖(甜> (2) a- D-吡喃半乳糖(较不甜〉 (3) a- D-吡蝻ft露铕(甜) <4>芦-D-吡喃讨錤溏(苦)
基于Searle公司的开拓性工作,Ariyoshi提出L -天冬氨酰胺的甜味模型理 论,这个酰胺是用具有合适立体构象的小基团R,和大基团K2进行《-取代的。 通过对这种模型的改进,发现刚性带有适当分支的R2基团能明显提高化合物的 甜度。所有的高效甜味剂(甜度大于蔗糖的1000倍)至少有一个酯基或酰胺基 团作为R,或R2,而且肽键上不能有取代基。天冬氨酰残基可通过氨基的酰化作 用来改性,这样有时会产生非常甜的化合物。
表1 -56 用环状同型物取代天冬氨酰的阿斯巴甜衍生
研究者对仙茅蛋白的变味作用机理进行了探讨,认为仙茅蛋白可能与奇异果 素类似,也有两个结合点:一个与甜味接收蛋白的接收点连接,另一个靠近甜味 接收器位点的位点结合。后一个结合作用很强,因此仙茅蛋白一旦与舌头接触, 不易与接收器的膜分离。仙茅蛋白的活力位点微弱地刺激接收器膜上的甜味接受 位点,从而产生较弱的甜味。而唾液中的Ca2+和/或Mg2+抑制了仙茅蛋白对甜 味接受位点的刺激,导致甜味消失。舌头接触水使得唾液中的二价阳离子从舌头 表面去除了,W此仙茅蛋白的甜味冋复。酸引起了甜味接收器膜构型的变化,从 而导致仙茅蛋白活力部位对甜味接收位点的亲和力增强了,因此,酸引起的甜味 更强。也可能酸引起了仙茅蛋白的构型变化,从而增强了亲和力。舌头表面的酸 去除后,使仙茅蛋白的活力部位与甜味接收位点脱离,而仙茅蛋白本身不从接收 器膜脱离。
江海区高麦芽糖
展开阅读全文