陆丰市麦芽糖醇
图4-10比较了两个酶反应体系中可用简单的离心方法分离的残留淀粉量。 由于挤汛膨胀淀粉以悬浮状态存在反应混合体系中,因此大多数残留淀粉经离心 (3000g, lOmin)得到分离,而传统体系中残留液化淀粉很难分离。
以AmberlheXAD-7为载体通过戊二醛(最终浓度为12. 5%)交联制得 的固定化酶活力和稳定性都很高,其中Ambedite XAD-7是含疏水部位和亲水 部位的聚丙烯酸交联酯。固定在Amberlhe XAD-7的嗜热菌蛋白酶在40弋饱 和乙酸乙酯缓冲液中浸泡一周测定其稳定性:PH5?7时,固定化酶在载体中 很稳定,剩余相对活力约80% [阁2-25 (1)虛线]。饱和乙酸乙酯溶液中 的pH稳定曲线和在水溶液中的pH稳定曲线差别很大,尤其在酸性条件下。 在pH4时,乙酸乙酯饱和溶液中固定化酶的剩余活力约50%左右,在缓冲液 中活力完全消失
此外,AH、B、X甜味理论的应用也有助于人们对“相对甜味值”的更好 理解。“相对甜味值”的突出优点是,它将所有甜味物质的全部甜味特性和一种 标准甜味物质(通常是蔗糖)联系起来,并用一个具体的数值来表示,从而大 大简化了对各种甜味剂的联系和比较。但值得注意的是,由于一个甜味剂的所有 味觉属性被简单地组合成一个单独的“相对甜味值”来表示,也造成了其甜味 本质与“相对甜味值”之间存在一定的差异。
注:*各种有机溶别在55尤用含水缓冲液預铯和。
在日本,较旱使用的San Sweet T-l (ST-1)产品就是嗦吗甜与甘草甜素、 食用酸及氨基酸的混合物。日本研究人员发现ST-1产品比5%或10%蔗糖溶液 甜100倍,分别比丨5%和20%的蔗糖甜98和96倍。去除甘草甜素的混合产品 (San Sweet T-100),甜味特性更好。虽然嗦吗甜能提高甘草甜素的甜度,但在 某些pH及离子强度下它们会发生反应生成不溶性结合体,从而使嗦吗甜丧失 甜味。
已知TCK只有在亲水的溶剂中才能高度溶解,但在保证酶解反应能得到 必要的水的前提下,a-半乳糖苷酶却被证明在与水不互溶的有机溶剂中, 最稳定并具有最高的活力。这个矛盾,可以通过使用被含水缓冲液预饱和的 有机溶液时得以解决。研究发现,高水混溶的溶剂如二氣六环、丙酮、甲醇 和四氢呋喃等,即使使用高达30%的含水缓冲液进行预饱和,也不支持 a-半乳糖苷酶的水解反应。但在含水缓冲液预饱和的正丁醉、甲基异丁基 酮和乙酸乙酯三种溶液中,TCR的溶解度均达到50%以上。这些溶剂同时 也支持a-半乳糖苷酶的活力,只是三者对三氣蔗糖的溶解性存在很大的差 別,如表3-9所示。
甲苯法生产糖精钠的工艺流程见图 6-11。
(一)不同卤素取代基对甜度的影响卤素取代基大小及其电负性大小,对蔗糖衍生物甜度具有明显影响。4, r, 6,-三溴蔗糖衍生物的甜度是蔗糖的800倍,而4,\\ 4\ 6-四溴蔗糖衍生物 的甜度为蔗糖的7500倍,显然溴取代基的尺寸能使甜味分子更好地结合到味莆 受体上。电负性较强的氟取代基和尺寸较大的碘取代基都不能如此大幅度地增强 甜味,如4, 6,-三氟蔗糖衍生物的甜度大约是蔗糖的40倍,而4, r, 6'-三碘蔗糖衍生物大约比食糖甜120倍,而相应的氣代蔗糖衍生物和溴代蔗栅 衍生物的甜度分别为蔗糖的600倍和800倍,说明溴代蔗糖衍生物和氣代蔗糖衍 生物具有最合适的分子大小和电负性。
甘.赖?笨丙?丙.鳜.天冬?谷.谷?天冬酰胺.纊?异亮?甘.谷氨酰胺.酩?甘.挤 ?亮.苏.苯丙?天冬胺.賴?纗.异亮?铕? .半lit.蛋?賴.輳.(家?异亮.酤. 谷_天冬酰胺?I