台山市蔗糖素
Jennings和Jones发现减少氣化磺酰反应中吡啶的用量可避免环状硫酸盐的 产生而产生氣硫酸酯。后者在后处理中可用甲醇碘化钠溶液去除,并释放出游离 的羟基。在这些条件下,可用甲基a-D-吡喃葡萄糖苷制得甲基-4,6-二 氣-4, 6-二脱氧-a吡喃半乳糖苷的2, 3-氣硫酸盐(图3-41)。在低 温条件下进行这个反应时,发现它是通过2, 3, 6-四氣硫酸盐这个中间产物, 经氣阴离子的亲核双分子取代,先是在C-6位上进行,得到6-氣化物,然后 在C-4位上缓慢取代并经构型颠倒,最后产生4,6-二氣-半乳糖苷-2,3- 氣化硫酸盐(图3-41)。图3-41氣化磺酰和甲基-?-D-吡喃葡萄糖苷的反应围3 -42通过在吡啶中与S02C12反应来改性蔗糖分子中的呋喃來糖苻琅元通过严格控制庶糖与氣化硝酸的多中心反应(multi - cenlred reactions), 可产生氣化程度从1?5的衍生物。主要反应途径起始于半乳糖基-蔗糖的 6'-单氣衍生物(29%的得率),接下产生6,6^-二氣衍生物(29%得 率),之间是4, 6,6、三氣衍生物(50%得率)以及4,6,6^四氣衍生 物(45%得率)和4,6, r, 4\ 6'-五氣衍生物(图3 -43)。4f -氣代 硫酸盐的直接取代似乎是由于空间因素而被阻止。而f-氣取代基的引人是 通过3,4'-环氧化物实现的。通过对氣代产物的分离和鉴定,得知立体选 择性反应的反应活性顺序是:H0 - 6' > H0 - 6 > H0 -4 > H0 -厂> H0 - 4'。 ho-r的氣化速度之所以缓慢,是因为它是受阻的新戊基翌的初级羟基, 且毗连于《-异头物基团上。在四氣化碳和吡啶溶液中,使蔗糖与三苯磷发 生选择性反应能更容易地制得6,6^-二氣化物(得率>70%)r 4,6,1、 6^-四氣一4,6,\\ 6#-四脱氡-半乳糖基-蔗糖最好是用氣化锂取代蔗 糖,经过6,1', 6'-三苯基磺酸盐得到6, 6-氣化物,再与氣化磺酰 在C-4位上进行选择性反应而制得的(图3 -44)。1975年的分析认为, 这种化合物比固体蔗糖甜200倍,这是人们第一次制得的增甜的天然碳水化 合物衍生物。这种衍生物不但具有很好的口味感和甜味特性,而且不参与人 体代谢,因此是一种潜在的无能量强力甜味剂。从结构与甜味的关系来肴, 最初研制的一?种海藻糖衍生物~4,6,4\ 6、四氣-4,6,4\ 6、四 脱氧-半乳糖基-海藻糖(图3-45),不但没有甜味,反而与奎宁一样苦, 这种情况令人惊奇。
纽甜的去酯化过程中也会产生微量的甲醇,但是在纽甜合理摄人范围内,其 代谢所产生的甲醇不会造成安全性问题,即便在消耗髙达90%的预测摄人a的 纽甜时,所产生的甲醇与日常膳食中所产生的甲醇黾相比仍可忽略不计。比如,
Winnig等对识别lacUsole的分子基础进行了更为深入的完善。通过对特定受 体突变体的功能分析,他们发现小鼠WR3的第五个TM呎域的突变V738A足以 使小鼠甜味受体获得lactisole敏感件,尽管这一受体突变体的敏感性要比人体甜 味受体的低。另外,通过小鼠T1R3的突变K735F,可得到一个与人体受体具有 相同丨actisole敏感性的小鼠甜味受体。所有以前的资料均表明,甜味受体的 T1R3原体的TM K域中有真正的第四个部位。图1 -34描述了受体T1R2-T1R3 上的四个结合部位。
~O- S. muians ZAHT - -A- - 5. muians SB25 - -O- - 5. muuws SL - 1 -? -B- ? - S. mutans NS - XIII
孅办5时l,"J/h
三、色氨酸衍生物
第二节莫奈林
时所感到的甜度要比此数值大或小。例如,与2%蔗糖溶液相比,它的甜度是40 倍,但与20%蔗糖溶液相比,其甜度只有24倍,这可能足由于髙浓度的甜蜜素 带来了苦后味的缘故。但这种苦后味只有在高浓度条件下才出现,通常使用范围 内不会感觉到。表6-2所示为在不同浓度下甜蜜素相对于蔗糖的甜度。总的说 来,甜蜜素的甜味特性甚佳。
台山市蔗糖素
展开阅读全文