雁江区海藻糖
对于二肽分子来说,R,可以是酯基,R2可以是综基,如图2-72 1所示。若让 仏与化基团对换,如图2-72 II所示,则得到表2-42所示的L-天冬氨酰-D- 氨基酸酯,这时要求D-氨基酸酯作为一个小侧链占据K,位罝。当&为甲基 (D-丙氨酸酯)日夂其甜味会随酯基大小的变化而变化([15] ~ [20]),以丙 基化合物[17]的甜度最大。当R,由甲基逐渐增大至丁基时([18]、[21] ~ [23]),其甜味逐渐下降直至为零
蔗糖被卤代脱氧后,其甜度可能增加数倍,甚至数千倍。其中,甜度约为蔗 糖650倍的三氣蔗糖,已被成功地开发为实用塑功能性食品甜味剂,有人甚至还 合成出了甜度高达蔗糖7500倍的蔗糖卤代物,而且这可能还不是其中最甜的。 因此,研究卤代脱氧蔗糖的结构与甜度的相互关系及变化规律,对于揭示甜味剂
也就是说,异型二聚体是仙茅蛋内惟一的活性形式。尽管仙茅蛋A2可能含 有一个N -糖基化位点,但糖基化并不是Neoculin产生甜味和味道修饰作用的必 要条件。由于仙茅蛋白1和仙茅蛋白2分别含有大量的碱性、酸性残基,因此仙 茅蛋白的三个异形体分子的表面性质显著不同。尤其是活性异形体Curculin 1-2,它呈现可能对分子与所假定的甜味受体间的相互作用产生重要影响的两极 电荷分布状态。
Akiko Shimizu - Ibuka等综合分子动力学和对接模拟的结果,提出了 Neoculin 甜味产生和味迫修饰作用的机制的猜想,如图5 -29所示。Neoculin的结构是处 于打开和闭合的动态平衡的。当降低pH时候,平衡会转向打开的状态,此时, 只有处于打开构象的那部分才可以与hTlR2 -T1R3受体结合。结合于受体的 Neoculin则会改变受体的构象平衡,使之变为活性形式。因此,Neoculin在酸性 条件下可以产生强烈的甜味,而中性条件下,甜味则十分弱。但是,至于pH的 变化是如何影响受体结构,这点研究人员仍未搞清楚,并且在实验过程也没有考 虑这方面的影响。
很多世纪以前,非洲西部就种植一种能结鲜红色、金字塔形状果实的植物。 这种果实紧挨皮层以下的组织具有强烈的甜味,它的使用甚至比甘蔗引入非洲西 部还要早。然而,这种果实直到19世纪才在较大范围内被人们所认识。很多植 物学家开始周游这块“黑大陆”,对该植物进行分类与鉴定。Daniell于1839年 首次遇到这种红果子,进行了很多的研究。他在1855年的PhamrnceuUcal Journal (《药学学报》)上报道了他的研究结果,证实这种果实内部肉质有很强的甜味。 后来,BermeU经仔细分析认为它属于木冬叶届(Pkrjnium'}植物,就将之命名 为P. daniellii借以纪念其发现者。BemuiU还用传统的拉丁文字对这种植物做f 详细介绍。但令人遗憾的是,Bernie丨丨鉴定错了,后人重新鉴定确认它属于竹芋 科(Maranlaceae)植物 77Mmmo/ocomw,故重新命名为:T. danieliii (TD)。
图3-21氣化反应的反应机制
(四)以异氰酸环己酯和硫酸为原料
二、蔗糖的酯化、醚化和脱氧化衍生物
中数日。收集,水洗,再用lOOOmL水进行重结晶,干燥后可得晶体206g (熔点 150g),得率约82%。若再用甲醇重结晶一次,可得晶体199g (熔点 172-174*00为了最大限度地提髙纯度,最好再用甲醇敢结晶一次。
羧基被取代的阿斯巴甜衍生物