禅城区安赛蜜
C-2上氧代对甜味具有很显著的影响,例如2,6,6'-四氣甘寐蔗糖 非常苦,苦味儿乎与奎宁差不多。用甲烷磺酰氣和二甲基甲酰胺先在-20尤下对 蔗糖处理2h,再在70T下处理10h,可有选择性地在C-6和C-6'上氣化,产 率在50%左右。在二甲基甲酰胺中,201下,用2,2-二甲氧基丙烷和对甲基 苯磺酸对其进行缩醛化作用,处理4h,然后在嘧啶中川醏酸酐使其乙酰化,除 去环乙缩醛,生成c-r和C-2位未被保护的蔗糖衍生物。用磺酰氣和氣化锂 将其氣化,脱脂后生成苦味的2,6,厂,6、四氣忡露蔗糖。
(1) 1%嗦叫甜于丨% -30%乙醉中(2> 1%嗉叫甜于40%乙醉中 (3) 1%嗦叫甜于60%乙醉中(4> 1%嗦吗甜于60%乙醉中(pH=3> (5) 1%嗦吗甜于60%乙醉中(未调pH)
对甜叶菊提取物进行分级提纯,能改善其口感特性,减少不良后味。其中最 明显的是甜菊双糖苷A,提纯后显示出的感官特性比90%的甜菊苻还要好。 DuBois等人认为可通过增强分子的亲水特性來去除甜菊苷的苦味。
图1 -29代谢塑受体质体活性位点与配体的结合方式Temussi等人所描述的模型阐明了甜味受体的两个原体的作用。由于T1R3 是甜味受体和鲜味受体所共有的,因此,人们很自然地就会把特异性的来源接至 活化的主要作用分别归结于两个受体的T1R2原体和T1R1原体。蛋白质的楔形 假设已经表明,T1R3在蛋白质与受体外部结合部位结合中起主要作用。随后, Morini等制作的详尽的逑模证明了两个原体在甜味受体的活性状态下均可容纳非 蛋白质配体,并且这一观点还得到了实验结果的支持。
纯奇异果素含13.9%的糖,葡糖胺、甘露糖、半乳糖、木糖和岩藻糖的摩 尔比为3. 03:3. 00:0.69: 0.96: 2. 12。奇异果素的氨基酸序列分析已表明其分子 中的糖组分是与Asn-42和Asn-186相连的,这两个位点完全糖基化。连接的 寡糖主要由乙酰葡糖胺、甘餌糖、岩藻糖、半乳糖、木糖组成。Noriko Takahashi等对奇异果素的N连接寡糖具体结构及分布进行了研究,发现奇异果 素天冬酰胺连接的寡糖主要有5种结构,它们分布情况见表5 - 16。
折吞复性试验表明:嗦吗甜不仅还原变性不容易,折叠复性也很闲难。在折 祛过程中,变性蛋白质的疏水作用和16个巯基间形成的不规则二硫键使大部分 变性蛋自发生凝聚,因此植物嗦吗甜折奋必须在极低浓度并且可控的条件下缓慢 进行。但即使天然嗦吗甜初始浓度为2(Vg/mL,最后总得率也只有约1% (O^jtg/mL),仅能被WA或高度浓缩后进行品尝试验才能测定。鉴于这些试验 成效小,因此需要寻求低成本且更髙效地从变性酵母嗦吗甜中得到天然结构的 方法。
表3 -n 蔗糖卤代脱氣衍生物的相对甜度
纽甜的去酯化过程中也会产生微量的甲醇,但是在纽甜合理摄人范围内,其 代谢所产生的甲醇不会造成安全性问题,即便在消耗髙达90%的预测摄人a的 纽甜时,所产生的甲醇与日常膳食中所产生的甲醇黾相比仍可忽略不计。比如,