赫山区阿拉伯糖
反应体系中的葡萄糖副产物,以及约有超过40%未发生反应的G-6-a,可 以通过回收而敢新利用,吸附在DEAE-纤维素柱上的果糖转移酶,也可以通过 用O.5mol/L磷酸盐缓冲液洗脱而实现循环使用。但在反应过程中,利用树脂将
注:维持时间
(一)不同卤素取代基对甜度的影响卤素取代基大小及其电负性大小,对蔗糖衍生物甜度具有明显影响。4, r, 6,-三溴蔗糖衍生物的甜度是蔗糖的800倍,而4,\\ 4\ 6-四溴蔗糖衍生物 的甜度为蔗糖的7500倍,显然溴取代基的尺寸能使甜味分子更好地结合到味莆 受体上。电负性较强的氟取代基和尺寸较大的碘取代基都不能如此大幅度地增强 甜味,如4, 6,-三氟蔗糖衍生物的甜度大约是蔗糖的40倍,而4, r, 6'-三碘蔗糖衍生物大约比食糖甜120倍,而相应的氣代蔗糖衍生物和溴代蔗栅 衍生物的甜度分别为蔗糖的600倍和800倍,说明溴代蔗糖衍生物和氣代蔗糖衍 生物具有最合适的分子大小和电负性。
Rubusoside还带有明显的苦后味。有人利用巨大芽孢杆菌 (BacUlus megaterium)产生的环糊精葡萄糖基转移酶对 Rubusoside进行改性处理,得到数种同型物的甜度更高,
Shallenberger认为糖分子与甜受体AH、B系统的几何形状决定了两者间的 复合强度,甜味化合物的构象与构型对味觉刺激起取要作用。那些含有芳香残基 的刚性分子结构,如糖精和氨基硝基苯,如果它们的A—B轨道间距合适的话, 在这方面具有明敁的优势。因此,Shallenberger理论能够解释这些人工合成甜味 剂比蔗糖甜几百倍的事实。糖的甜味感觉只能持续数秒钟,说明其结合力较弱。 如果说甜味分子的立体化学结构对甜受体的配合程度决定其甜度大小的话,那么 甜味分子与甜受体相互作用的速率或许要比复合结构本身的持续性更为关键。
阁6 - 4 251时糖枯钠/钙水溶液的相对密度与浓度的关系
由于化学水解缺乏专一性,因此对6-糖苷键的水解需要在特定酶的 作用下才能完成。
Guthrie和Wauers认为,1 ’ -氣-厂-脱氧蔗糖对转化酶是稳定的,而且酸 对它的水解速度为对蔗糖的丨/10。与6’-氣衍生物一样,它比蔗糖甜20倍,但 6-氣-6 -脱氧蔗糖是苦的。易从七-新戊酸酯(hepui-pimlate,游离的 4-OH基闭)制得的4-氣-半乳糖基-蔗糖衍生物,其甜度是蔗糖的5倍(图