宿州市木糖醇
用其他天然存在的氨基酸,包括谷氨酸(天冬氨酸的髙级同系物)来代替 阿斯巴甜分子中的L-天冬氨酸,都会使其丧失甜味并变成苦味。天冬氨酰基中 的a -氨基和办-羧基团不能被取代,因为相应的a - 二甲基氨基和-甲基酯同 型物均无甜味。/V-端氨基必须是两性离子且需与带电基团保持一固定距离,㈥ 为只有这样的二肽分子才符合Shallenberger和Acree提出的AH - B甜味理论模 型。如图2-70所示,阿斯巴甜分子中的氨基团是甜味模型中生甜团(AH),羧 基团是生甜团(B),它们与甜受体的氢键结合如图2-71所示。在阿斯巴甜的 四个非对映体中,只有L,L-构型具有甜味,D, D-、L, D-和D,L-构型 均没有甜味。
\ / \ /
第一节嗦吗甜
0=C 0 ^^ 0=C OH
Brazzein在植物甜蛋白中分子质虽最小,分子质萤约为6473u, p/为5。它 具有良好的水溶性,在水中的溶解度在50mg/mL以上,甜度是等质虽蔗糖的 2000倍。其结构相对简单并具有良好的热稳定性和PH稳定性,在较宽的1^和 温度范围内保持稳定,在80T保持4h甜度没有减弱,在85弋仍保持折叠形式, 在髙pH的溶液中仍保持甜味活性。它良好的热稳定性也许应归因于分子内的4 个二硫键。由于这些特性使其在食品添加剂中具有巨大的应用潜力,并成为研究 甜味蛋白分子结构、生化特性及甜味机制的理想蛋白模型。
由于T1R2-T1R3受体和mGluRl的序列之间具有足够的相似性,因此可以 由此建立模型。似乎这也就足以猜测甜味受体也有和mGluRl —样的总体特征。 Kunishima等人的研究结果表明,mGluRl的胞外N端区域有三种不同的结晶形 态:一种是与配体复合的形态(lewk.pdb);另外两种则不带配体,分别是自由 态I (lewLpdh)和自由态II (lewv?丨xlb)。自由态I是和复合态显著不同的“非活 性”的构象,自由态n则是与具有“活性”复合态几乎一样的构象,两者处于平衡 状态。如果受体T1R2-T1R3像mGluRl那样变化,那么它也应该存在三种不同的 形态:含小分子质虽甜味剂(与谷氨酸分子相应)的复合态、自由态I——“非活 性”构象和自由态n——具有和“活性”复合态几乎一样的结构。
表5-9 各转化体中嗦吗甜表达盒拷贝数(以切咖单拷贝gdhA基因为对照}
1%9年全面禁用后,除f Abbott实验室外,美国的其他所有厂家均停业生 产。之后,日本也相继禁用,只剩下其他一些国家,主要是巴西、南非和印度尼 西亚还有些市场。然而,欧洲仍允许使用,因此当时德国和西班牙反而建厂 生产。
脱去。表2-S 保护基团及相应条件注:TFA =三氤乙酸.X=说士,a =根#条件可说士或不脱去,b =不发生反应,c =犮生反0 = ?定?2.添加有机助剂法由式(2-6)可知,随者P&增大,PK2减小,平衡常数增大。通常在有机 助溶剂或多羟基醇存在时,溶液的介电常数减小,因此加入助溶剂可增大P&, 由此增大(尺或式(2-6)两边取对数得