金平县海藻糖
在本研究中,VUsmeiei■试剂由PC15和冷冻DMF ( PC15质量/kg: DMF体积/L = 1:1.5)反应制得,反应中温度不超过50$。以Vilsmeier进行选择性氣化反应 时,温度最好为1丨5~125弋,因为温度过低,反应速度过慢;温度过髙,易造
(一)三氣蔗糖的物化性质
(五)剩余保护基团的脱除作用该反应是典型的酯交换反应,通常需在酸或碱的催化下进行,常用的催化剂 有硫酸、对甲苯磺酸、醇钠、氢氧化钠(钾)等。碱性条件下反应较完全,碱 催化脱酰基的机理如图3 -26所示。RC2H, R=庶糖基闭 R-= -CH,图3-26碱催化脱酰苺的反应机制
对阿斯巴甜及阿斯巴甜盐酸化物的晶体结构作了分析,沿着肽主链的键几乎 都是反式的。根据Goodman等人上述的观点,阿斯巴甜旁链优先存在的构象是 F.D,,而阿斯巴甜盐酸盐优先存在的构象是FBDI。在天冬氨酰羧基 和胺基呈反式存在,因此不是活性构象。相反,Gorbhz认为FuDi是活性构象, 因为它最符合Kier的甜味三角形模式。然而,Kier的三角形模式是根据硝基苯 胺而不是二肽确立的。Heijden等人认为二肽的甜味三角形要比硝基苯胺的大, 因此FnDB构象最符合。另一密切相关的化合物是阿斯巴甜的LiBr复合物,结晶 状态以F,D■为优先构象,所以在固体状态下,阿斯巴甜及其HC1盐、UBr盐的 优先存在构象均不一样。
(一)阿斯巴甜的代谢通过放射元素标记技术在小鼠、大鼠、狗或猴子身上,对阿斯巴甜的吸收、 分配、代谢和排泄情况作了专门的研究,用以观察阿斯巴甜可能的代谢特性。所 有的试验结果一致表明,如图2-29所示,阿斯巴甜很快就分解成3个部分:苯 丙氨酸、天冬氨酸和甲醇,之后经吸收代谢并通过正常途径排出体外。这3种成 分与日常食品中的有关成分没有任何区别。闬2-29 阿斯巴甜的代谢途径 何斯巴蚶最终分解成天冬氨齩(Asp),笨兩氡酸(Phe)和甲蛘, 吸收后进入机体正常的代进途径中
关于糖精钠中钠离子的作用,目前还没弄清楚。有一份研究表明,糖精钠的 活性较其他形式的糖精来得大,此外,还发现摄人与糖精钠一样数量的糖精酸 后,并没有膀胱肿瘤病变发生。
根据图3-31可知,低温长时间反应有利于S-6-a的形成。但当反应时间 大于6h时,“相对S-6-a值”增长缓慢,继续延长时间对反应对提髙S-6-a 得率并无明显效果,因此选择6h为最佳反应时间。
第一节甜菊苷
有趣的是,葡萄糖C-2位上的羟基可以部分作为质子受体,如在蔗糖、松 二糖和a-麦芽糖中;也可以不同程度地作为质子供体,如在异麦芽糖和办-麦 芽糖中。因此,在形成分子内氢键过程中,葡萄糖基C-2位上的羟基既可以作 为分子内氢键的受氢体,又可以作为分子内氢键的供氢体。
阿力甜分子中的二肽,可以通过化学方法或酶法合成。其中,化学合成法应 用广泛,但化学合成过程中通常需要保护侧链,且有机溶剂和产物结合可能产生 毒性,同时,在二肽形成过程中会产生外消旋作用。相比之下,酶法合成可以通 过较少的步骤,在较低的温度下进行,并且由于酶的专一性强而不会出现产物的 外消旋现象,不需要进行侧链的保护。