果洛州甘露醇
注:*各种有机溶别在55尤用含水缓冲液預铯和。
1997年7月,美国国家健康研究所宣布,其国家毒理学计划(NTP)对有 可能把糖楮从联邦政府的致癌物报告书(Report (m Carcinogens)中除去的资料 进行了审查。该审查是应能量控制委员会的一个申请而进行的。能萤控制委员会 认为,糖精不应名列其中,这是对消费者的误导,并且不是立足于现有科学事实 基础上的。
表4 -22 环状芽孢杆菌的-半乳糖苷酶催化
然而,纽甜的实际消耗量会比这些估计的数字要小。当今市场上除阿斯巴甜 外,还有甜蜜素、安塞蜜、糖精钠等其他甜味剂。而许多产品混合使用了两种或 更多的甜味剂,而不是单一的添加阿斯巴甜,因此,纽甜的实际消耗最将会少于 在阿斯巴甜消耗世的基础上所作的预测。
乙烯乙二醉(乙烷-1, 2-二醉)具有甜味而乙醇没有甜味,因此,醇基 团被认为是维持甜味分子的最低要求。对于碳水化合物來说,相邻碳原子上的一 对羟基(即一个乙二醇基团)被确认是AH、B单元,其中一个羟基作为AH, 而另一个羟基上的氧原子作为B (图丨-4)。甜受体结合位是以氢键与甜分子相 结合的,因为它含有与AH、B系统相反的结构基团,如酰胺(N—H)和羰基 (C=0)结构以及羟基氨基酸等。Suami认为,L -丝氨酸和L -苏氨酸单元均 可作为甜受体蛋白a-螺旋的端残基来充填该甜受体,在此NH2基作为AH, 0H上的氧原子作为B (图1-4)。需要指出的是,在碳水化合物结构中所有乙 二醉单元的任一羟基均可作AH或B单元(假如它们可互换的话),但并不是所 有的甜味化合物(包括氨基酸)都是这样的,这就解释了为何D-型和L-型氨 基酸的甜度不同,而D-糖和L-糖的甜度相同这一事实。
表4-21 底物浓度对环状芽孢杆菌的/?-半乳糖苷酶
四、Neoculin的甜味与变味机理
甜菊苷与乳酸、淀粉或葡萄糖混合可降低甜菊苷产品的吸湿性。据说往浓缩 蔗糖或葡萄糖溶液中添加甜菊苷可加速其结晶过程。有些填充剂除了可作风味掩 盖剂或控制甜菊苷的湿润性外,还可使其用于工业化操作,这类物质有淀粉和蔗
糖精Saccharin,是从拉丁字母Saccharum转变而来的。它是1878年 C. Fahlherg和I. Remsen在Johns Fahlberg大学进行邻磺胺苯中酸氧化研究中发现 的。Fahlberg为此申请了美国专利319082。1884年美国、1885年英国和1899年 德国相继建厂生产。