合水县索马甜
Unilever已成功地生产出嗦吗甜II及嗦吗甜分子的前体化合物,这一杰出成 就是通过多年的努力,应用遗传工程方面的最新知识完成的。有两篇专利文献对 这种生产方法做T相当详细的描述。其中一篇描述的娃利用重组DNA技术把植 物基因的遗传信息引人大肠杆菌{Escherichia coli)细菌寄主细胞内,将“设计 好”的DNA适时移人细菌体内就可生成嗦吗甜蛋白。第?.篇描述的是重组[)NA 分子的结构,它可产出嗦吗甜分子的前体化合物。嗦吗甜D分子的氨基末端有额 外的22个氨基酸,羧基末端也冇额外的6个氨基酸。这种伸长的分子有助于微 生物细胞更易排出蛋白质,因此增加了应用时的经济效益。遗传工程的另一个任 务就是通过基W突变使嗦吗甜分子发生特种变异,以观察其对产品甜度及其他特 性的影响。然而,就H前来说,要把这些实验成果转变成商收化规模生产尚冇不 少困难。另一种适合用来生产嗦吗甜的寄主是酵母或其他无毒性的发酵微生物, 因酵母的食用历史很长,对有关管理部门以及最终消费齐来说吸引力更大些。
之后,又发现了第二个成功的例子/V- (V-甲酰甲氨酰)-天冬氨酰苯丙氨 酸甲酯[135],它的甜度与天冬氨酰苯丙氨酸甲酯相似。[131] ~ [135]的化 学结构如图2-77所示。
折吞复性试验表明:嗦吗甜不仅还原变性不容易,折叠复性也很闲难。在折 祛过程中,变性蛋白质的疏水作用和16个巯基间形成的不规则二硫键使大部分 变性蛋自发生凝聚,因此植物嗦吗甜折奋必须在极低浓度并且可控的条件下缓慢 进行。但即使天然嗦吗甜初始浓度为2(Vg/mL,最后总得率也只有约1% (O^jtg/mL),仅能被WA或高度浓缩后进行品尝试验才能测定。鉴于这些试验 成效小,因此需要寻求低成本且更髙效地从变性酵母嗦吗甜中得到天然结构的 方法。
图4-14所示为甜菊苷转糖苷反应中,甜菊苷(葡棊受体)、环糊精、转糖 基甜菊苷的浓度变化情况。环糊精是环糊楮葡糖基转移酶催化的转葡糖基反应的 中间体,在反应起始阶段大萤积累,但12h后略有下降,该变化与挤压膨胀淀粉 直接生产环糊精不同。
图1-丨3 D-氨基酸和L-氨基酸的构甩及其AH、B、X系统吡喃型和呋喃型糖分子环上的氧被亚甲基取代后的化合物称假糖 (Pseudosugar),如少-办-D -吡喃杲糖。这种假糖分子的构象与其相应的正常 糖分子相似,如必-/3-DL-吡喃葡萄糖(阁1 -14)。屮-a-DL-批喃半乳糖 和沙-卢-DL -吡喃果糖的甜度与它们母体糖的甜度相似。环上的氧对糖分子的 甜度没有多大影响。4甲棰吡喃糖苻、甲基呋喃糖苷和假糖的化学结构 (I)甲基-?-D-吡喃葡萄糖什 (2)甲基-彡-D-呋嘣果榭作 (3)屮-卢-D-吡蝻葡鈞铕 (4)甲基吡喃木溏作
作为一种高效甜味剂,甜蜜素主要应用于如下产品:
乳糖、RU浓度及反应时间对产物的影响见表4-21。随着底物浓度的增加, RGal-1、RGal-2、RGal -3的数量略有增加。RGal - 1主要在反应起始阶段 (1.5h)形成,然后迅速下降,下降同时形成RGal-2,反应结束时有少最 RGal-3形成。
图3-23 =苯基磷氧化物与氣化亚砜的氣化机理
近年来,随着计算机模拟技术在微观领域应用的飞速进展,通过计算机来模 拟甜味分子与甜味受体之间的相互作用已成为可能,这种可能将一个逻辑化的微 观世界直观地展现在人们面前,并为最终揭示甜味分子的呈味机理开辟出一条崭 新的途径。
2.计算机模拟识别