商水县果葡糖浆
研究表明,与蔗糖结合后处于活化状态的受体蛋白,其AH-B、B-XH、 XH-G丨、G,-G2、G2-G3、G3-G4 和G4-AH距离都约为0?65mtl,这七个识 别部位通常是天然糖甜味分子的基本识别部位,空间排列为非对称的七边形。
蔗糖浓度/%
(三)邻甲基苯胺法
图1-16 (1)中的阿斯巴甜分子模型是处于伸展构象的,而图丨-16 (2) 中的阿斯巴甜,按照Goodman的模型所预测的,应该是处于折昼构象的。怛是, 结构研究的实验结果并不足以给出明确的答案,因为阿斯巴甜在晶体结构中所呈 现的构象与Goodman的模型中的是一致的,而更具刚性且更甜的[(L-a-Me) Phe2]阿斯巴甜的构象则与TeimiW的模型一致。
图3-37各种有机溶剂对TCR转化成三氣蔗糖的影响 Christopher Bennett等人齊对从从vinacea和思曲潘(A. niger )中获得的 ?-半乳糖苷酶,进行提高水解反应速度的试验,包括使用表面活性剂、增加离 子强度和提髙反应温度等。前两种方法均不成功,但发现当pH为5.0?5. 5、反 应温度为551时,酶的失活和反应速率处于最佳平衡状态。此时,歸.vinacea 中获得的a-半乳糖苷酶,对TCR水解反应的& =5.8mmol/L,最高速率
制备三氣蔗糖的核心在于对活泼的C - 6位羟基进行保护,使之不被氣化。 所谓单基闭保护法,就是只对蔗糖分子8个游离羟基中的C-6位羟基进行专一 保护,然后直接进行选择性氛化。该方法可以使反应过程大幅度简化,但一般需 要髙效的色谱分离操作。
表3-10 三氣蔗糖的应用
用三氣蔗糖代昝蔗糖喂养小鼠,很少出现舌侧和邻端牙齿的损伤,在牙根表 面不会出现龋齿。这表明,三氣蔗糖没有致龋齿特性。
Searfe公司的早期研究表明,没有一种天然存在的氨基酸可代替天冬氨酸, 而且其氨基和羧基团必须保护未取代状态。如表2-55所示,用磷酸根
合成这两种糖的单甲基醚衍生物并品尝,发现在2、3、4或6位置上进行的 甲基取代对甜味均不发生任何影响。综合这些试验和那些脱氧糖试验的结果,可 以确定第3位罝构成ShaHenberger AH、B系统中的B,第4羟基构成AH,第2 羟基构成AH的可能性要小些。因此,吡喃葡萄糖中AH、B系统是位于分子中 比较活泼、很少受干扰的那个部位,它既不包含空间活泼的伯醇基也不包含异构 体中央的端基。