宜君县甘露醇
图2 -23 401时,饱和缓冲溶液和水/有机溶剂二相体系中pH和 Z - Asp - PheOMe相对起始速率关系图 注:①--0-,表示在乙酸乙?炮和缓冲溶液的反应,緩冲液中落有0. 05rool/L Me? . NaOH, Snunol/LCaClj > 0.013mmol/L 嗜热箱务台柏.、80mn?oI/L PheOMe ? HCK 80mmol/L Z - jVsp;②?和漕,表示在以乙破乙?为有机溶射的水/有杌滚則二相体系中的反应;③參,表示在凍冲液pH7.0时,根梅在有机相的Z-Asp-PheOMe算得的起始速牟的相对苜分教;④表示根据在水相的Z - Asp - PheOMe算得的起始速芈相对苜分教;⑤虚线表示理论值a
甲苯法生产糖精钠的工艺流程见图 6-11。
图4-14所示为甜菊苷转糖苷反应中,甜菊苷(葡棊受体)、环糊精、转糖 基甜菊苷的浓度变化情况。环糊精是环糊楮葡糖基转移酶催化的转葡糖基反应的 中间体,在反应起始阶段大萤积累,但12h后略有下降,该变化与挤压膨胀淀粉 直接生产环糊精不同。
该转糖苷反应中,底物KU浓度及反应时间对转化率的影响见表4-13、图4-20。RU浓度较低时,RU-F合成速率较高,RU的转化率(RU-F/RU)在 反应初期达到最大。RU浓度0.025nu)l/L时,反应lh,达到最大转化率88%。 RU的转化率随RU浓度上升而下降,RU浓度0.5mol/L时,反应20h,转化率 为19%。S、RU的结果类似。S浓度0.025mol/L时,反应0.5h后转化率达 到 80%。
R93-17乙酰箪迁移的反应机制
人们对莫奈林的兴趣仍在继续,但这主要是出于学术或理论上的重要价值, 因为莫奈林是研究甜味理论及甜蛋臼结构与甜味相互关系理论的一种极好的原 料。至于莫奈林的商业化生产及在食品中的实际应用,可能性并不大。主要是由 于该植物的栽种萤不多,栽培困难,甜蛋白本身的物化性质不够稳定,尚缺乏系 统的安全毒理数据等诸多原因。
(二)构象分析
英国药物安全委员会在仔细审查了嗦吗甜作为医药品的一种陚形剂的安全性 与适用性后,于1981年10月批准使用。嗦吗甜特别能替代糖精应用于医药品, 它还能增强凉性药物的风味,它还有其他几种用途目前仍在临床试验中。
蔗糖那种独特而又特別令人满意的甜味,似乎不能用葡萄糖和果糖基之间简 单组合来说明,这两个糖基可能在固定倾斜角度方向上形成分子内氢键。当用氣取 代羟基时,发现它的甜度增加了数百倍,这明显是由于几种不同类型氢键复杂的相 互作用的结果。吡喃葡萄糖基的c-2羟基起AH作用,而B则是呋喃果糖基 c-r的氣取代基团。甜度大幅度增加的原因,在于以椅式构象为主的吡喃葡糖 残基C-4轴向取代基充当了亲油性基闭[图1-15 (1)],另一方式是把C-4 位置上的连接基团对换在呋喃果糖残基的C-f位置上C [图1-15 (2> ],这 就解释了 1',6’ - 二氣和4, lf,6,-三氣衍生物甜度增加的原因。4,6'-三氣-4,1',6'-三脱氧半乳蔗糖(即三氣蔗糖,SUCral08e)的情况也是这 样,因其两个生甜闭的相互增效作用,明显强化了该化合物的甜度增大效果。它 是此系列化合物中最甜的一种。在这两种情况中,分子模型表明AH、B、X系 统十分接近于Kier三角形的相互间距。