鱼台县乳糖
浓度/(g/100mL^ 液)
(一)嗦吗甜在食品饮料中的应用
6,二氣-6, 6'-二脱氧蔗糖没有甜味。6-氣取代基明显的逆反影响 或是由于在c-6位上的取代使得基团增大,或者由于它与甜受体竞争疏水结合 位。从另一方面来说,厂,6'-二氣衍生物的影响是协同的,它能使蔗糖分子的 甜味增加76倍,在4,r-二氣-4,r-二脱氧-半乳糖基-蔗糖中的协同影 响更明显,能使蔗糖甜味增加120倍。后者是用氣化磺酰经氣化蔗糖的6,61- 二酯位而得到的(图3-48)。
②在此基础上,通过合成B链的Glul -Pn?20和Cyc21 -Gly41片段,获得 大B链片段——Glul - Gly41 ;
pH (2) PhcOMe/mmol/L围2-25 在饱和乙酸乙酯中,用固定在Amberfi丨eXAD-7的嗜热菌蛋穴鵑 催化合成Z - A?p - PheOMe的结果(1)一,平衡得率(Z - Aap = 80mmol/L, PheOMe =200mmol/L, a = IS);—?—,初衫反应速车(Z - A?p = PheOMe =80ma>ol/L,a = 15):——,阋定化嗜热*蛋白醻的穗定性.用闭定化酶在40t乙酸乙曲饱和溶液中浸浼一;I)启残留相对法 力表示C
用弱酸在惰性溶剂中将4-PAS进行异构化,4位的乙酰基转移至6位,得 到较纯净的2, 3,6,3',4'-五乙酸蔗糖酯(6-PAS),理论得率为75%。弱 酸最好选用羧酸,尤其是诸如乙酸之类的脂肪族羟酸。为了缩短反应时间,必须 升高反应温度,试验表明适宜温度为80~15(TC,最佳温度lOO-UOt,反应 2~4h0故惰性溶剂的沸点应为丨00?丨40弋,且可溶解蔗糖五乙酸酯,如甲基异 丁基酮的沸点为lire。高温条件下羟酸生成自由H +可促进迁移反应,其反应 机制推测如图3-17所示。
蔗糖那种独特而又特別令人满意的甜味,似乎不能用葡萄糖和果糖基之间简 单组合来说明,这两个糖基可能在固定倾斜角度方向上形成分子内氢键。当用氣取 代羟基时,发现它的甜度增加了数百倍,这明显是由于几种不同类型氢键复杂的相 互作用的结果。吡喃葡萄糖基的c-2羟基起AH作用,而B则是呋喃果糖基 c-r的氣取代基团。甜度大幅度增加的原因,在于以椅式构象为主的吡喃葡糖 残基C-4轴向取代基充当了亲油性基闭[图1-15 (1)],另一方式是把C-4 位置上的连接基团对换在呋喃果糖残基的C-f位置上C [图1-15 (2> ],这 就解释了 1',6’ - 二氣和4, lf,6,-三氣衍生物甜度增加的原因。4,6'-三氣-4,1',6'-三脱氧半乳蔗糖(即三氣蔗糖,SUCral08e)的情况也是这 样,因其两个生甜闭的相互增效作用,明显强化了该化合物的甜度增大效果。它 是此系列化合物中最甜的一种。在这两种情况中,分子模型表明AH、B、X系 统十分接近于Kier三角形的相互间距。
的混使用。安赛蜜与阿斯巴甜、甜蜜素共,
常用来除去三苯甲基保护基的试剂有:80%乙酸(回流温度)、HC1/ CHC13、HBr/乙酸(在0弋)。在酸性条件下的糖苻键,温度越髙、时间越长 就越容易断裂。在Ot、冰醋酸和浓盐酸的作用下,脱去三苯甲基还原成
几乎所有的二氢奄耳酮都是由相应的査耳酮催化还原而得,而杏耳SR则娃有 黄烷酮在碱作用下发生开环反应而得,图4 -26所示为其反应过程。