古田县低聚果糖
0=0 0 + K0H ~? 0=C 0 + H,0
美国麻省理工学院Walk J. H. Nauta医学博士写道:“根据这些數据资料, 首次审议时我们不能在阿斯巴甜无毒性方面达成全体一致的意见。我们将这种不 安情况报告给您,但我们赞同您在这种重要情况下对阿斯巴甜所做出的最终批准
3.固定化酶反应
芦-D-呋果聚糠 苷-办-D-咲嚙塔格期<2200 x> (205 x>图3 - 57 C-4'取代基构象对三氣蔗糖衍生物甜度的影响
如表2-58所示,用D, L-氨基丙二酸(Araa)取代L-天冬氨酸是改变 /V -端氨基酸而又能保留甜味的第一个例子。Ama分子中氨基与竣基的关系与 通常氣基酸的一样,符合Shallenberger和Acree的AH 一 B理论。用D,L - Ama 取代天冬氨酰苯丙氨酸甲酯分子中的L-天冬氨酸制得的二肽衍生物[126],其 甜度是蔗糖的300 ~400倍,也有人报道是“200倍”或“相甜”。Ariyoshi指出 甜味非对映体可能是D-Ama-L-Phe-OMe,而不是L,L-非对映体。由于手 性中心取代基次序优先性的变ift, D-Ama的绝对构型与L-Asp是一致的。后 来,应用类似的方法制备出D,L-Ama-D-丙氨基酯。D,L-Ama-异丙基
治理等方面有着不可比拟的优点,是比较适宜的生产方法,但目前也仍然存在需 要克服的难题。
人们很早就认识到一种味可与另一种味相互作用,如果是两种味同时刺激受 体时更是如此。对混合刺激物深入细致的研究表明,甜味能减弱苦味。反过来也 是这样,一个单一的刺激物对另一种刺激物的影响符合一个简单的对数比例关 系。但是,如果刺激物彼此暂时分开,则会出现“适应”现象,前面的甜味刺 激会使随后的苦味更苦,其总体效果视刺激物是否相同而定。如果具有物理持久 性的甜味刺激物分子首先出现在口水中时,按照给予刺激物溶液的体积不同,其 适应现象易受影响。但令人奇怪的是,文献报道的多数心物学味觉研究均忽视了 溶液体积这个因素。通常认为基本味的响应强度只与所提供溶液的浓度有关,而 持久性与浓度、体积均有关系。当摄取了简单甜分子(如葡萄糖)水溶液世达 250mL时,其在口水中的持续时间至少有30s。然而,这个持久性只不过与刺激 物的开始下降(initial decline)情况有关,它必须同味觉持久性这个概念区分开 来,味持久性与离子载体附近的刺激物分子浓度集中引起的持续现象冇关。对一 种特殊形式的甜味剂,若事先能够仔细分析其时间与强度这两个因子的话,那么 基本味的相互作用显然对加工工艺是有利的,只有分别定量测出这些因子,才会 找到味改性所需的有效分子。此外,必须把每个因素都肴成是影响甜味的整个化 学接受过程中的一个内在特性^
(三)以环己胺和氣磺酸或其盐为原料
X疏水基团的引入同时也成功地解决了与甜味相伴的手性反常问题。因为 AH、B甜味理论不能解释这样一个事实:大部分D-氨基酸是甜的,但它的 L-对映体却不甜;而糖的D、L-对映体则都是甜的。AH、B. X甜味三角理论 认为,甜味蛋白受体的三个结合基团(一NH/、一0H、一R)是呈顺时针方向 排列的,因此甜味分子中的AH、B、X (如果有的话)生甜团只有呈顺时针方 向排列时才能和同样以顺时针方向排列的甜受体发生键联,从而产生甜味刺激, 如图1 -12所示。
(四)固相合成法生产莫奈林