铁山港区甜蜜素
疏水结合基团X的引人成功地解释了高效甜味剂的强力效应,即所有未被 取代的糖分子都是亲水性的,与甜味蛋白受体的结合力较弱,所以不会太甜。而 通过在适当位置引人合适的疏水基团可有效增加糖分子的疏水性,从而显著增强 糖分子与甜味蛋白受体的作用力,大大提高了甜度。很显然,X疏水基团是影响 化合物甜度的一个控制因素,但并不是所有的甜味化合物都有这样的疏水部位, 因此它不是甜味的先决条件。
仙茅蛋白(curculin)是Haruyuki Yamashita等从马来西亚西部的无茎草本棺 物的果实中分离得到的蛋白质,这种植物的果实重约lg,当地 人用这种果实使食品由酸变甜。人们因此认定仙茅蛋白就是那种既具有甜味,又 具有变味活力的奇妙蛋白质。
,(被占用受体的_
单基团保护法的核心在于蔗糖(:-6位羟基的保护,以避免该位置在随后的 氣化反应中引人氯原子带来苦味,该步骤也是以下各步反应的基础和影响终产物 得率的关键所在。这种选择性保护需要相当严格的反应条件,同时还需要有效的 分离设备,因此,蔗糖C-6位羟基的单基团保护,成为整个合成过程中对反应 条件和分离条件要求最严格的步骤。已知蔗糖具有醇的典型反应,其8个羟基的 相对活性顺序大体为V >6 >4 > r >2 >3 >3# >4',这些羟基的反应活性不仅受 空间排列的影响,也受反应性质、反应条件(温度、溶剂、时间、反应物浓度 等)、试剂性质与活化络合物稳定性等多方面的影响。尽管各羟基(尤其是同级 羟基)之间所处的位置及活性差异不大,但只要严格控制反应条件,仍然有可 能选择性地合成部分取代的蔗糖衍生物并使某种特定的产物处于优势地位。
⑤不是口腔微生物的合适作用底物,不会引起牙齿踽变。
在设计三氧蔗糖的制备过程中,首先要选定一个蔗糖C-6位羟基被保护的 反应中间物,该中间物要求位于蔗糖C-4、1\ 6,位上的羟基可以被选择性氣 化,而其他位置上的羟基则不是很活泼。如前所述,最常用的保护法包括醚类、 缩醛(酮)类和酯类3类。单独保护蔗糖C-6位上伯羟基,最适用的方法是酯 类保护法,因为它兼具引人方便、在所葙反应条件下稳定以及易于除去等优点。 在酰化反应中,能使生成的蔗糖酯对氣化试剂稳定、最后易于水解除去的任何酰 化试剂都可以使用,通常选择相应酸的活泼衍生物作为酰化试剂,其中最常用的 是酰基酐或酰基卤。对蔗糖来说,形成乙酸酯或其他羧酸酯娃最有效的保护醇羟
在世界各国的有关文献上,以采用阈值浓度(cT>来比较味强度者较多,所 谓阈值,就是仅能察觉到味逬时的最低浓度,例如甜度一般采取以蔴糖在阈值时 的甜度作1.00为标准。但按Fechnei?规律(c)a,即甜味强度尺与甜味剂浓 度c的n次方成正比。对糖分子来说,其n = l.?;对人工甜味剂糖精和甜蜜素 等,其〃小于丨。如用最稀的觉察浓度(阈值cT)相比,前者为蔗糖的1/700, 较后者小70倍,即以蔗糖的阈值浓度为丨.00时,糖楮的甜度是700,甜蜜素的 甜度是70。但用最高浓度的/??值相比,前者较蔗糖强不到一倍,而后者反不及 蔗糖甜。这是因为搪楮和甜蜜素与甜受体的结合常数分别比蔗糖要大 两个和一个数谊级。当浓度增大时,蔗糖的甜度增加很快,而糖精的甜度增加却 很慢。因此,阈值浓度的甜味倍数只限于作学术探讨用,不能作为实用价值标 准。甜味倍数也受溶剂、pH和温度等的影响。例如,在51时果糖比蔗糖甜, 在60t时蔗糖比果糖甜。因此,试验条件还有必要标准化。
与甲苯法相比,用苯酐法生产糖 梢钠,在产品收率、产品质童和污染
正如本章第一节所述,在阿斯巴甜的代谢过程中可释放出55%的苯丙氨酸。 苯丙氨酸是人体必需8种氨基酸中的1种,进人通常的代谢途径进行代谢,但是 患有苯丙酮酸尿症(PKU)的患者缺乏代谢苯丙氨酸的能力。如表2-29所示, 尽管与肉、奶及其他蛋白质食品相比,阿斯巴甜中的苯丙氨酸含量很低,但很多 国家都规定,含有阿斯巴甜的食品必须在包装上注明该产品含有苯丙氨酸,以提 醒PKU患者的注意。由于以纽甜增甜的食品中纽甜的浓度大约为阿斯巴甜的 1/40,因此这种产品中的苯丙氨酸含鱼极低,含17rng/L纽甜单水合物相当于含 7.08mg/L苯丙氨酸,大大低于果汁的苯丙氨酸含量。而且,17mg纽甜中的苯 丙氨酸通过代谢途径进人机体的有效数萤就更低了,不足0.7mg,为阿斯巴甜 释放量的1/400。因此,以纽甜增甜的食品没有必要注明其含有苯丙氨酸。
铁山港区甜蜜素
展开阅读全文