武宁县纽甜
它性质稳定,即使在沸腾的醎溶液或稀释的热 硫酸溶液中也不分解。它对肠道微生物的抵抗 能力也很强,大约只有0.1%会被水解成甜菊 醇,而同等条件下甜菊苷很易被水解,其苦后 味也比甜菊苷弱多了。
②国际研究发展联合会的研究指出:能明显引起身体变化的糖精最小摄入 量为3%,这相当于一人每天饮用750罐软饮料中所包含的糖精总數量。
对L-天冬氨酰-1 -氨环丙基甲酸正丙酯[176](表2-68)的晶体结构 也作了分析,不过不能将之与阿斯巴甜作直接的对比,因为两者之间存在结构差 异。然而,[176]的晶体构象并不是充分伸展而是明显弯曲的,其酯上的烷氧 基和天冬氨酰甚呈顺式排列。
{三)乙酰基由4-C位向6-C位迁移
将这个反应用在蔗糖h可制得复杂的混合产物,在这里葡搪残基相成地转变 成4,6-二氣-半乳糖残基。在条件下,用蔗糖重复这一反应,然后通过色 谱分离获得得率不髙的1个四氣化和2个五氣化衍生物,这是由呋喃果糖苷单元 的反应演变而来的。果糖苻的反应产物经光谱特别是核磁共振鉴定后,得知一个 是3',4'-环氧,另一个是y -烯,第三个是丨、4\ 6,-三氣化物(图
仙茅蛋白和奇异果素都具有变味特性,因此对它们进行专门的比较。前面提 及仙茅蛋白的抗血淸只与奇异果素发生微弱的反应,另还发现仙茅蛋白不与奇异 果素的专一性抗血淸反应,这表明仙茅蛋白的抗原决定子与奇异果素的不同。仙 茅蛋白和奇异果素含有5个相同三肽,而在一般情况下,这种情况的出现几率是 非常低的,因此有可能其中某个相同三肽就是变味活性位点。
来自巴拉圭和巴西的研究报逍,大多提到甜叶菊提取物对血糖水平有影响。 例如,1966年Miguel报道说巴西糖尿病人每天摄人甜叶菊提取物800mg,未发 现任何副作用,且病人感觉良好,虽然其病情继续发展。1975年,Oviedo—份 来自巴拉圭的报道提到25个健康、无糖尿病的人摄取甜叶菊水提取物或提取物 的干燥结晶后,血糖水平有下降现象。但这些报道并不能得出某种结论,因为试
在非均匀酶反应体系中还原糖含量约0.3g/L,而以液化淀粉为葡糖基供体 的传统反应体系中,该值约为8.0g/L。上述结果表明非均匀反应体系中转葡糖 基产物的分离纯化过程会明显简化。
一、阿力甜的化学结构与甜味特性
糖精Saccharin,是从拉丁字母Saccharum转变而来的。它是1878年 C. Fahlherg和I. Remsen在Johns Fahlberg大学进行邻磺胺苯中酸氧化研究中发现 的。Fahlberg为此申请了美国专利319082。1884年美国、1885年英国和1899年 德国相继建厂生产。