龙华区三氯蔗糖
据估计,尽管人们对糖精的安全性问题存有疑问,但美国仍有大约70万人 经常食用,包括占总人数1/3的10岁以下的小孩。在美国,大约有60%的糖精 是用在软饮料中,有20%用在其他饮料和食品,还有20%作为餐桌甜味剂加以 使用。美国FDA统计美国消耗掉的糖精总数虽每年高达3000t,以其甜度大约是 蔗糖的300倍计算,几乎有100万t的蔗糖被糖精所替代。
当生产果酱、果冻时,为了改莆这类产品的质构,必须添加些山梨糖醇之类 的填充剂,这样可以生产出较蔗糖产品能萤低得多的产品来。相对于用蔗糖的产 品来说,使用安赛蜜的果酱、果冻由于含渗透活性的化合物浓度低,因此不易受 微生物侵染而腐败,适当添加些防腐剂也有助于避免微生物的侵染。
如表2-25所示,纽甜的L-苯丙氨酸甲酯部分还可以由其他取代基团取 代。最强的2个取代基是:(1)L-六氩化苯丙氨酸甲酯基,它是六氢纽甜的组成之一。以摩尔 數计,六氢纽甜的甜度约为蔗糖的丨3500倍,以质量计约为12000倍[图 2-43 (l)]e
1.底物浓度和反应时间对产物的影响
1.酶制剂的选择已知具有糖酶活性(如葡聚糖酶、蔗糖酶以及《-、卢-半乳糖苷酶等)的 50多种商品酶制剂,人们都已进行了水解6,4\ 1' 6W-四氯-6,4\ 1\ 6"-四脱氧半乳棉籽糖(TCR)的《-1,6糖苷键的活力测试,但结果并不理 想。这些酶制剂包括4种从植物中获得的a-半乳糖苷酶,以及7种从细菌和霉 菌中获得的《-半乳糖苷酶,其中只有一种商品酶制剂,即半纤维素酶对TCR 具有活力,但水解速度非常慢。为此,人们转向从微生物中寻找能水解TCR的 a -半乳糖苷酶。
这样,生甜团中的AH、B就不仅仅局限在氢供体和氢受体范围,而是扩展 到所有能接受未共用电子对的电子受体和所有能给出未共用电子对的电子供体都 可以作为生甜团中的氢供体和氢受体,从而使甜味三角理论中AH、B基团的适 用范围大大拓宽。所以,在三乙酸或三硝酸甘油酯中,酮基上的C原子和硝基 中的N原子就可以以Lewis酸的形式通过接受未共用电子对而分别充当两个甜味 分子生甜团中的A。
1%9年全面禁用后,除f Abbott实验室外,美国的其他所有厂家均停业生 产。之后,日本也相继禁用,只剩下其他一些国家,主要是巴西、南非和印度尼 西亚还有些市场。然而,欧洲仍允许使用,因此当时德国和西班牙反而建厂 生产。
4-氣-4-脱氧-a-D-吡喃半乳糖苷-1,4,6-三氣-1,4,6-三 脱氧-々-D-塔格呋喃糖苷的甜味是蔗糖(5%)的205倍,4-氣-4-脱氣 _a_D_P比喃半乳糖苷一1, 4, 6_三氣-1, 4,6_三脱氧_芦_0_果聚呋 喃糖苷是蔗糖(5%)甜度的2200倍,这两种三氣蔗糖衍生物甜度相差10 倍。分子结构不同之处主要在C-4’,可见C-4'上卤取代基及其立体化学结 构对甜味具有重要影响,见图3-57。4 -氣-4-脱氧-a-D-批喃半乳糖苷 -1, 6-二氣-4-卤代-1, 4,6-三脱氧-分-D-呋喃果聚糖的C-4'卤代 成分甜味递增顺序为:F>Cl>Br>I。C-f取代基对研究V -脱氧-4' _ 卤代蔗糖类似物结构和甜味之间关系相当重要。Hooft等人认为三氣蔗糖衍 生物甜味构象具有 =75° 和少c_2,_0 + c.,+5 =95。的特
(三)三肽、四肽和五肽化合物