福清市索马甜
ffl6-25 安赛蜜的合成途径
为了研究正电荷之间强烈的排斥作用是否会改变Neoculin的结构,以及酸性 条件下引起强烈甜味与Neoculin的结构之间是否存在相互关系,研究人员企图通 过研究低pH下的Neoculin结晶结构来寻求答案。可是,他们至今仍未获得酸性 条件下的Neoculin结晶。因此,他们改用通过建立分子动力学模拟来进行研究。
二氢查耳酮作为甜味剂可应用于食品、饮料、糖果和医药品中。它们持久的 甜味和恒定的性质使之特别适合应用于口香槻、糖果、牙裔和漱【:丨剂之类产品。 由于新橙皮二氢査耳酮甜度大,使用时必须添加些糖醉之类填充剂,故必须注意 各种组分配料的风味配合问题。有些专利描述了二氢查耳酮与蔗糖、非糖类甜味 剂、葡萄糖酸内酯或香草醛混合使用有很多优点。
关于甜叶菊甜味成分的研究,1908年就有Reseneclc等人的报道。1931年 Lavielle从甜叶菊中分离出甜菊苷,分析它是由1分子甜味菊醇和3分子葡萄糖 组成的糖苷。后来,经众多研究确立了甜菊苷的分子式。日本还最早分离出甜菊 叶子中的其他几种成分,包括甜菊双糖A苷、B苷、C苷、D苷和E苷等。1985 年Kinghoron等人的分析认为,甜菊叶子中含有双萜、三萜、固醉、类黄酮、单 宁及挥发性油等31种成分。日本甜叶菊公司认为,挥发性芳香油、单宁和类黄 酮等是构成甜叶菊提取物不良风味的主要成分,称为“甜味质萤影响因子”。也 有人认为,甜叶菊的苦味是由于倍半萜内酯引起的。
最优条件主要考察反应酶浓度、反应时间和混合物含水量对反戍的影响。 ?-胰凝乳蛋I1丨酶浓度从3% ~20% (w/w)等不同浓度对反应产率的影响见图 2-63。如图所示,反应产宇随酶浓度的增加而不断上升,在15%浓度时产率达 到53% (mol/mol),此后,随酶浓度的增加,反应产率上升幅度趋于平缓。图2 -62 N-苄氧羰荩-L-天冬氨酸二乙酯和D-内氨酰胺组成的二元体系的熔点 +没有加水,含有12%的水作为轜佐剂 +混合钧中含水摄15%酶浓度(w/h>V%图2 -63 ?-胰凝乳蛋卩1酶浓度对A’ -苄氧羰基-L -天 冬氨酸乙酯-D-丙氨酰胺产率的影响 +混介物中含水*15%,反应8h由图2-64可知,反应产率随着反应时间的增加而增加,反应约8h后达到 最大产率53%。随着反应的进行,反应物的减少和产物的产生改变了反应混合 物的低熔点特性,使反应混合物逐渐固化。最后,反应由于反应混合物的固化太 严重而几乎停止。S 2 -64 反应时间对N -苄氧羰基-L -天冬氨酸 乙酿-D-丙氨酰胺在低熔点混合物中产率的影响 注:其中/V-苄氧簾基-L-天冬软酸二乙酯和D-丙氨酰胺分别加人0.5mmol,混合物中含水S 15% (?/?), 胰凝乳蛋A酶浓度为丨5% (?/?>?
很多世纪以前,非洲西部就种植一种能结鲜红色、金字塔形状果实的植物。 这种果实紧挨皮层以下的组织具有强烈的甜味,它的使用甚至比甘蔗引入非洲西 部还要早。然而,这种果实直到19世纪才在较大范围内被人们所认识。很多植 物学家开始周游这块“黑大陆”,对该植物进行分类与鉴定。Daniell于1839年 首次遇到这种红果子,进行了很多的研究。他在1855年的PhamrnceuUcal Journal (《药学学报》)上报道了他的研究结果,证实这种果实内部肉质有很强的甜味。 后来,BermeU经仔细分析认为它属于木冬叶届(Pkrjnium'}植物,就将之命名 为P. daniellii借以纪念其发现者。BemuiU还用传统的拉丁文字对这种植物做f 详细介绍。但令人遗憾的是,Bernie丨丨鉴定错了,后人重新鉴定确认它属于竹芋 科(Maranlaceae)植物 77Mmmo/ocomw,故重新命名为:T. danieliii (TD)。
环己胺是合成甜蜜素的起始原料及代谢产物,具有与甜蜜素明显不同的物化 性质。环己胺是一种碱而不是酸,相对分子质量99. 17,带有负臭味和苦味,没 有甜度。它是一种澄淸的无色液体,极易与水、乙醉和非极性溶剂相混合,沸点 134. 5^ , 0.01%水溶液的pH为10.5。环己胺在工业上有很多应用,包括用在 水处理和促进橡胶硫化。
此法为甜蜜素最普遍的合成方法,根据所选氨基磺酸盐种类的不同,又可分
三氣蔗糖在水溶液中有2种可能的降解途径。在低pH条件下,三氣蔗糖会缓 慢地水解成其组成单糖的衍生物,水解速度随和温度而定。在高pH条件下, 它会在碱催化下从1和6’位置上消去氣化氢分子而形成3',6^-酐。图3-5所示 为这二种可能的分解途径。当然在食品配料系统中,只可能出现酸催化分解现象。
福清市索马甜
展开阅读全文