科尔沁左翼中旗异麦芽酮糖
(-)阿斯巴甜早期的同型物阿斯巴甜自发现之日起,经历了一条长达丨5年溲长而曲折的道路,直到 1981年才被美国FDA正式批准使用。继美国之后,世界上共有90多个国家和地 区先后批准使用,阿斯巴甜终于得到人们的承认。
(三)通过复配来改善嗦吗甜的甜味特性
0=0 0 + K0H ~? 0=C 0 + H,0
(一)纽甜的代谢纽甜是一种新型的非营养类高效甜味剂,它不含能量且在动物和人体内具有 很好的代谢和药动学范畴。纽甜在所有的动物种属内都能很快地但仅部分地被吸 收。它在体内主要代谢途径是用全身普遍存在的酯酶来水解甲基酯,迅速地分解 为脱酯化的纽甜和微萤的甲醇。基质特异的高容傲酯酶对纽甜的脱酯化反应起着 关键作用,该酯酶存在于体内的许多不同部位并且不依赖于任何器官的特异性 (如细胞色素450)。
二肽甜味剂对/V-端结构有严格的要求,C-端却是经常可以变化的。苯丙 氨酸可在环上被取代,如可用L-蛋氨酸或L-酪氨酸替换苯丙氨酸,但这样会 损失一部分甜味。除了正位的一种-OMe衍生物外,用高级同系物替代酯基团 虽仍有甜味,但甜味随分子质谊的增加而减弱。表2-40总结了这方面早期的研 究情况。表 2-40早期有关阿斯巴甜化学结构的改进研究注:①所给数佰是相对于蔗糖甜度的倍数,下同。
{三)乙酰基由4-C位向6-C位迁移
即成糖精钠盐,或与Ca (0H)2反应生成糖精钙。
图3 -34所示为在单糖专--性果糖转移酶合成S -6 - a过程中,底物和产物 浓度的变化。从图中可以看出,在反应初始阶段发酵生成S-6-a的起始速率和 时间成线性关系,随后逐渐失去线性关系,这可能是因为葡萄糖对酶的竞争性抑 制作用和底物浓度降低的缘故。在此期间,少数低聚糖副产物也会通过转果糖基 作用而形成。在反应后期,反应速率和S-6-a的降解速度及剩余蔗糖的浓度和 酶的活力有关。反成过程中,S-6-a的最高浓度可达到12%,得率约为58%, 随后S-6-a会慢慢水解,使果糖浓度逐渐上升。由此可见,5-6-3的得率是 处于动态发展中的,其最大得率依赖于果糖转移酶所引起的各种反应。
在发酵过程中,一旦葡萄糖从介质中抽走,G-6-a的含量迅速降低。而适 当提髙葡萄糖介质的浓度,可以缩短G-6-a达到最大浓度的发酵时间。当葡 萄糖的起始浓度为4%时,G-6-a的最大得率(丨.5%)可以在3(VC保温96~ 120h后得到;如果葡萄糖的浓度高于4%,摇瓶培养中的菌株生长和G-6-a的 分泌能力均下降,而葡萄糖浓度介于1% ~4%时,G-6-a的得率变化不大, 怛低于1%时得率就会降低。