卓尼县乳糖醇
对于二肽分子来说,R,可以是酯基,R2可以是综基,如图2-72 1所示。若让 仏与化基团对换,如图2-72 II所示,则得到表2-42所示的L-天冬氨酰-D- 氨基酸酯,这时要求D-氨基酸酯作为一个小侧链占据K,位罝。当&为甲基 (D-丙氨酸酯)日夂其甜味会随酯基大小的变化而变化([15] ~ [20]),以丙 基化合物[17]的甜度最大。当R,由甲基逐渐增大至丁基时([18]、[21] ~ [23]),其甜味逐渐下降直至为零
概括地说,甜蜜素具有以下这些特点:
另外进行了一个长达52周的试验,分别使用100%阿斯巴甜、阿斯巴甜与 糖精混合物、糖精、蔗糖的软饮料。仅用阿斯巴甜的可乐饮料5T藏于5弋、20X. 和30T的环境中,混合使用糖精-阿斯巴甜的可乐饮料IT藏于20尤环境中,单 独使用糖楮或蔗糖的贮于室温中。对4种含有阿斯巴甜的可乐进行分析,结果表 明在各种贮藏温度下,pH为2. 8?3.0的饮料中的阿斯巴甜首先出现分解现象。 还发现在5T条件下贮藏的使用了阿斯巴甜的饮料,与单独使用蔗糖的饮料在 “适口”与“甜度”方面并没有差别。含阿斯巴甜的可乐在5T、201下贮藏26 周后,其可接受程度很好。
2.受体蛋白识别部位人体甜味受体蛋白存在八个基本的识别部位,分别为B、AH、XH、G,、 G2、G3、04和0,识别部位由15个基本识别点组成,分别为B,、B2、AH,、 AH2、XH,、XH2、G,、E,、G2、Ej、g3、e3、g4、e4x d。
由图3-29可见,当蔗糖与乙酸酐摩尔比值在0.9 ~ 1.0之间时,“相对 S-6-a值”最大,且此时原料的利用率也最大。薄层色谱结果也显示,当乙酸 酐过量较多时反应产物趋于复杂化,这是因为多乙酰化产物大大增加的缘故。
注:①p-NP是对硝基笨-a-D-半乳糖苷,此处酶沽力以p-NP为底物进行昶量;
果浆中的仙茅蛋白不能用水抽提,因此经反复水洗可去除大萤水溶性物质, 然后可以用O.5rnol/L NaCI提取,这样就能明显提高仙茅蛋白的纯化倍数。 0.5mOI/LNaCl提取的提取液无色有甜味,然后经硫酸铵分级,再经CM-Sepha- _柱分离,NaCI线性洗脱后主要成分对应一个尖峰,该峰组分有甜味。加硫 酸铵至约饱和度的80%,得到的沉淀在lOrmnol/L磷酸缓冲溶液中溶解,溶液进 行Sepha(丨exG-100柱凝胶过滤纯化。这样从30g果浆(湿取)可以得到5mg纯 仙茅蛋白(表5-19),得到仙茅蛋白纯度很高,不溶于去离子水,溶于盐溶液 中,等电点7.1。
通过色谱分离得以纯化。