木里县安赛蜜
甜蜜素钠盐的分解温度为280T,不发生焦糖化反应,10%水溶液呈中 性,pH6.5D钙盐的分解温度为50CTC,10%水溶液pH为5.5 ~7. 5,在水 溶液中呈钙离子强电解质,易与果汁中的有机酸类作用,也可使乳中蛋白质 凝固。
CaMV, 35SRNA 的 Cauliflower Mosaic vims 启动子。
(二)莫奈林在酵母中的表达
1.生甜闭的分子识别早期对三氯蔗糖高甜度的解释,曾涉及厂-Cl作为生甜团AHS (下标S是 指甜味分子,下同),Bs、Xs三角形生甜团的质子接受部位,即充当化基团的角 色。这种假设可以解释(:11(:!3的甜味,其中一个氣和另一个氣分别作为1和乂5, 而缺电子的H作为AHS。但由于CHC13不是很甜,C1取代基的质子接受能力因 此被认为很弱(相对于0取代基而言)。实际上,红外光谱研究证实了 C1原子 的质子接受能力只有0原子的6% ~22%。这样,在0H和C1同时存在于分子中 时(如三氣蔗糖及其衍生物),C1取代基几乎不参与与甜味蛋白受体形成氢键。 因此,F氣蔗糖及其衍生物的AH、B部位只能是母体上的ft由羟基。
可是,由于邻二硫二苯甲酸结构上的空间障碍,与甲醇酯化需在髙压釜中进 行,反应条件较苛刻,对反应设备要求太高,只进行过中试,也没有实现工业化 生产。
QHuNHSOjNHjQH,, + NaOH K^H^NHSOjNa + QH,, NH2 +H20
Lelj等人结合使用NMK与分子力学计算法探讨阿斯巴甜构象优先性。首先 通过分析CHCH2碎片ABX质子的NMR偶合常数来分析旁链的构象优先性,然 后计弊出每个参差构象(staggered confonnalions,图2 -82)的相对密度。天冬 氨酰残基的参差构象(Di ~Db)与苯丙氨酸残基的参差构象(Fi ~Fn)是相 反的,天冬氨酰残基偏于Dd构象。另外两个参差构象,有一个(I),)携带反 式的NH/和COf基团,不能同时与甜受体形成氢键;另一个(Db)则充满了 大取代基。对于苯丙氨酸残基来说,根据苯基团优先偏于甲基酯而不是天冬氨酰 基团的立体直观观察事实,可推定它优先存在的构象是F:而不是FDt5 NMR分 析表明,苯丙氨酸C (/3) H2质子反向连接于该优先存在的构象上。还有一个参 差构象Fb,则充满大取代基。
⑤不是口腔微生物的合适作用底物,不会引起牙齿踽变。
五、阿力甜的应用
曰本于1979年6月就批准了嗦吗甜的成用。由于它是天然晶体,安全可靠, 甜度大,能虽低,同时具有风味增强特性等许多优良品质,W此日本的有关公司 很甩视对它的开发研究。大阪San-Ei化学公司调制了许多嗦吗甜产品,包括 San Sweet T -丨00 (作甜味剂)、Neo San Mark ( NSM,作风味增强剂)及 Nev San MarkC (NSMC,作咖啡风味增强剂)。